Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tim Ahfeldt is active.

Publication


Featured researches published by Tim Ahfeldt.


Cell Stem Cell | 2010

Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA.

Luigi Warren; Philip D. Manos; Tim Ahfeldt; Yuin-Han Loh; Hu Li; Frank H. Lau; Wataru Ebina; Pankaj K. Mandal; Zachary D. Smith; Alexander Meissner; George Q. Daley; Andrew S. Brack; James J. Collins; Chad A. Cowan; Thorsten M. Schlaeger; Derrick J. Rossi

Clinical application of induced pluripotent stem cells (iPSCs) is limited by the low efficiency of iPSC derivation and the fact that most protocols modify the genome to effect cellular reprogramming. Moreover, safe and effective means of directing the fate of patient-specific iPSCs toward clinically useful cell types are lacking. Here we describe a simple, nonintegrating strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate antiviral responses. We show that this approach can reprogram multiple human cell types to pluripotency with efficiencies that greatly surpass established protocols. We further show that the same technology can be used to efficiently direct the differentiation of RNA-induced pluripotent stem cells (RiPSCs) into terminally differentiated myogenic cells. This technology represents a safe, efficient strategy for somatic cell reprogramming and directing cell fate that has broad applicability for basic research, disease modeling, and regenerative medicine.


Cell | 2008

Disease-Specific Induced Pluripotent Stem Cells

In-Hyun Park; Natasha Arora; Hongguang Huo; Nimet Maherali; Tim Ahfeldt; Akiko Shimamura; M. William Lensch; Chad A. Cowan; George Q. Daley

Tissue culture of immortal cell strains from diseased patients is an invaluable resource for medical research but is largely limited to tumor cell lines or transformed derivatives of native tissues. Here we describe the generation of induced pluripotent stem (iPS) cells from patients with a variety of genetic diseases with either Mendelian or complex inheritance; these diseases include adenosine deaminase deficiency-related severe combined immunodeficiency (ADA-SCID), Shwachman-Bodian-Diamond syndrome (SBDS), Gaucher disease (GD) type III, Duchenne (DMD) and Becker muscular dystrophy (BMD), Parkinson disease (PD), Huntington disease (HD), juvenile-onset, type 1 diabetes mellitus (JDM), Down syndrome (DS)/trisomy 21, and the carrier state of Lesch-Nyhan syndrome. Such disease-specific stem cells offer an unprecedented opportunity to recapitulate both normal and pathologic human tissue formation in vitro, thereby enabling disease investigation and drug development.


Nature | 2010

From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus

Kiran Musunuru; Alanna Strong; Maria Frank-Kamenetsky; Noemi E. Lee; Tim Ahfeldt; Katherine V. Sachs; Xiaoyu Li; Hui Li; Nicolas Kuperwasser; Vera M. Ruda; James P. Pirruccello; Brian Muchmore; Ludmila Prokunina-Olsson; Jennifer L. Hall; Eric E. Schadt; Carlos R. Morales; Sissel Lund-Katz; Michael C. Phillips; Jamie Wong; William Cantley; Timothy Racie; Kenechi G. Ejebe; Marju Orho-Melander; Olle Melander; Victor Koteliansky; Kevin Fitzgerald; Ronald M. Krauss; Chad A. Cowan; Sekar Kathiresan; Daniel J. Rader

Recent genome-wide association studies (GWASs) have identified a locus on chromosome 1p13 strongly associated with both plasma low-density lipoprotein cholesterol (LDL-C) and myocardial infarction (MI) in humans. Here we show through a series of studies in human cohorts and human-derived hepatocytes that a common noncoding polymorphism at the 1p13 locus, rs12740374, creates a C/EBP (CCAAT/enhancer binding protein) transcription factor binding site and alters the hepatic expression of the SORT1 gene. With small interfering RNA (siRNA) knockdown and viral overexpression in mouse liver, we demonstrate that Sort1 alters plasma LDL-C and very low-density lipoprotein (VLDL) particle levels by modulating hepatic VLDL secretion. Thus, we provide functional evidence for a novel regulatory pathway for lipoprotein metabolism and suggest that modulation of this pathway may alter risk for MI in humans. We also demonstrate that common noncoding DNA variants identified by GWASs can directly contribute to clinical phenotypes.


Nature Genetics | 2009

Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells

Sarah Eminli; Adlen Foudi; Matthias Stadtfeld; Nimet Maherali; Tim Ahfeldt; Gustavo Mostoslavsky; Hanno Hock

The reprogramming of somatic cells into induced pluripotent stem (iPS) cells upon overexpression of the transcription factors Oct4, Sox2, Klf4 and cMyc is inefficient. It has been assumed that the somatic differentiation state provides a barrier for efficient reprogramming; however, direct evidence for this notion is lacking. Here, we tested the potential of mouse hematopoietic cells at different stages of differentiation to be reprogrammed into iPS cells. We show that hematopoietic stem and progenitor cells give rise to iPS cells up to 300 times more efficiently than terminally differentiated B and T cells do, yielding reprogramming efficiencies of up to 28%. Our data provide evidence that the differentiation stage of the starting cell has a critical influence on the efficiency of reprogramming into iPS cells. Moreover, we identify hematopoietic progenitors as an attractive cell type for applications of iPS cell technology in research and therapy.


Cell Stem Cell | 2012

Generation of Multipotent Lung and Airway Progenitors from Mouse ESCs and Patient-Specific Cystic Fibrosis iPSCs

Hongmei Mou; Rui Zhao; Richard I. Sherwood; Tim Ahfeldt; Allen Lapey; John C. Wain; Leonard Sicilian; Konstantin Izvolsky; Frank H. Lau; Kiran Musunuru; Chad A. Cowan; Jayaraj Rajagopal

Deriving lung progenitors from patient-specific pluripotent cells is a key step in producing differentiated lung epithelium for disease modeling and transplantation. By mimicking the signaling events that occur during mouse lung development, we generated murine lung progenitors in a series of discrete steps. Definitive endoderm derived from mouse embryonic stem cells (ESCs) was converted into foregut endoderm, then into replicating Nkx2.1+ lung endoderm, and finally into multipotent embryonic lung progenitor and airway progenitor cells. We demonstrated that precisely-timed BMP, FGF, and WNT signaling are required for NKX2.1 induction. Mouse ESC-derived Nkx2.1+ progenitor cells formed respiratory epithelium (tracheospheres) when transplanted subcutaneously into mice. We then adapted this strategy to produce disease-specific lung progenitor cells from human Cystic Fibrosis induced pluripotent stem cells (iPSCs), creating a platform for dissecting human lung disease. These disease-specific human lung progenitors formed respiratory epithelium when subcutaneously engrafted into immunodeficient mice.


Nature Cell Biology | 2012

Programming human pluripotent stem cells into white and brown adipocytes

Tim Ahfeldt; Robert T. Schinzel; Youn-Kyoung Lee; David G. Hendrickson; Adam Kaplan; David H. Lum; Raymond Camahort; Fang Xia; Jennifer Shay; Eugene P. Rhee; Clary B. Clish; Rahul C. Deo; Tony Shen; Frank H. Lau; Alicia Cowley; Greg Mowrer; Heba Al-Siddiqi; Matthias Nahrendorf; Kiran Musunuru; Robert E. Gerszten; John L. Rinn; Chad A. Cowan

The utility of human pluripotent stem cells is dependent on efficient differentiation protocols that convert these cells into relevant adult cell types. Here we report the robust and efficient differentiation of human pluripotent stem cells into white or brown adipocytes. We found that inducible expression of PPARG2 alone or combined with CEBPB and/or PRDM16 in mesenchymal progenitor cells derived from pluripotent stem cells programmed their development towards a white or brown adipocyte cell fate with efficiencies of 85%–90%. These adipocytes retained their identity independent of transgene expression, could be maintained in culture for several weeks, expressed mature markers and had mature functional properties such as lipid catabolism and insulin-responsiveness. When transplanted into mice, the programmed cells gave rise to ectopic fat pads with the morphological and functional characteristics of white or brown adipose tissue. These results indicate that the cells could be used to faithfully model human disease.


Molecular Psychiatry | 2015

Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities

Jon M. Madison; Fen Zhou; A Nigam; A Hussain; Douglas Barker; Ralda Nehme; K van der Ven; J Hsu; Pavlina Wolf; M Fleishman; Colm O'Dushlaine; Samuel A. Rose; K D Chambert; Frank H. Lau; Tim Ahfeldt; E H Rueckert; Steven D. Sheridan; Daniel M. Fass; James Nemesh; Thomas E. Mullen; Laurence Daheron; Steven A. McCarroll; Pamela Sklar; Roy H. Perlis; Stephen J. Haggarty

Bipolar disorder (BD) is a common neuropsychiatric disorder characterized by chronic recurrent episodes of depression and mania. Despite evidence for high heritability of BD, little is known about its underlying pathophysiology. To develop new tools for investigating the molecular and cellular basis of BD, we applied a family-based paradigm to derive and characterize a set of 12 induced pluripotent stem cell (iPSC) lines from a quartet consisting of two BD-affected brothers and their two unaffected parents. Initially, no significant phenotypic differences were observed between iPSCs derived from the different family members. However, upon directed neural differentiation, we observed that CXCR4 (CXC chemokine receptor-4) expressing central nervous system (CNS) neural progenitor cells (NPCs) from both BD patients compared with their unaffected parents exhibited multiple phenotypic differences at the level of neurogenesis and expression of genes critical for neuroplasticity, including WNT pathway components and ion channel subunits. Treatment of the CXCR4+ NPCs with a pharmacological inhibitor of glycogen synthase kinase 3, a known regulator of WNT signaling, was found to rescue a progenitor proliferation deficit in the BD patient NPCs. Taken together, these studies provide new cellular tools for dissecting the pathophysiology of BD and evidence for dysregulation of key pathways involved in neurodevelopment and neuroplasticity. Future generation of additional iPSCs following a family-based paradigm for modeling complex neuropsychiatric disorders in conjunction with in-depth phenotyping holds promise for providing insights into the pathophysiological substrates of BD and is likely to inform the development of targeted therapeutics for its treatment and ideally prevention.


PLOS ONE | 2011

Efficient culturing and genetic manipulation of human pluripotent stem cells.

Robert T. Schinzel; Tim Ahfeldt; Frank H. Lau; Youn-Kyoung Lee; Alicia Cowley; Tony Shen; Derek T. Peters; David H. Lum; Chad A. Cowan

Human pluripotent stem cells (hPSC) hold great promise as models for understanding disease and as a source of cells for transplantation therapies. However, the lack of simple, robust and efficient culture methods remains a significant obstacle for realizing the utility of hPSCs. Here we describe a platform for the culture of hPSCs that 1) allows for dissociation and replating of single cells, 2) significantly increases viability and replating efficiency, 3) improves freeze/thaw viability 4) improves cloning efficiency and 5) colony size variation. When combined with standard methodologies for genetic manipulation, we found that the enhanced culture platform allowed for lentiviral transduction rates of up to 95% and electroporation efficiencies of up to 25%, with a significant increase in the total number of antibiotic-selected colonies for screening for homologous recombination. We further demonstrated the utility of the enhanced culture platform by successfully targeting the ISL1 locus. We conclude that many of the difficulties associated with culturing and genetic manipulation of hPSCs can be addressed with optimized culture conditions, and we suggest that the use of the enhanced culture platform could greatly improve the ease of handling and general utility of hPSCs.


F1000 Medicine Reports | 2009

Induced pluripotent stem (iPS) cells: an up-to-the-minute review

Frank H. Lau; Tim Ahfeldt; Kenji Osafune; Hidenori Akustsu; Chad A. Cowan

Recent advances in nuclear reprogramming technology allow the transformation of terminally differentiated, adult cells into induced pluripotent stem cells whose phenotype is indistinguishable from that of embryonic stem cells. This leap forward enables the creation of patient-specific pluripotent cell lines that carry disease genotypes. These cell lines could be used both as in vitro models for the study of disease and as potential sources of material for cell replacement therapy. Ultimately, a greater understanding of the process by which cellular identity is shaped and altered may allow the generation of particular cell types for the treatment of degenerative disease.


PLOS ONE | 2011

Pattern Specification and Immune Response Transcriptional Signatures of Pericardial and Subcutaneous Adipose Tissue

Frank H. Lau; Rahul C. Deo; Gregory Mowrer; Joshua Caplin; Tim Ahfeldt; Adam Kaplan; Leon M. Ptaszek; Jennifer D. Walker; Bruce R. Rosengard; Chad A. Cowan

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality in the United States. Recent studies suggest that pericardial adipose tissue (PCAT) secretes inflammatory factors that contribute to the development of CVD. To better characterize the role of PCAT in the pathogenesis of disease, we performed a large-scale unbiased analysis of the transcriptional differences between PCAT and subcutaneous adipose tissue, analysing 53 microarrays across 19 individuals. As it was unknown whether PCAT-secreted factors are produced by adipocytes or cells in the supporting stromal fraction, we also sought to identify differentially expressed genes in isolated pericardial adipocytes vs. isolated subcutaneous adipocytes. Using microarray analysis, we found that: 1) pericardial adipose tissue and isolated pericardial adipocytes both overexpress atherosclerosis-promoting chemokines and 2) pericardial and subcutaneous fat depots, as well as isolated pericardial adipocytes and subcutaneous adipocytes, express specific patterns of homeobox genes. In contrast, a core set of lipid processing genes showed no significant overlap with differentially expressed transcripts. These depot-specific homeobox signatures and transcriptional profiles strongly suggest different functional roles for the pericardial and subcutaneous adipose depots. Further characterization of these inter-depot differences should be a research priority.

Collaboration


Dive into the Tim Ahfeldt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David H. Lum

Huntsman Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kiran Musunuru

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge