Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tim L.G. Hendrickx is active.

Publication


Featured researches published by Tim L.G. Hendrickx.


Water Research | 2012

Autotrophic nitrogen removal from low strength waste water at low temperature.

Tim L.G. Hendrickx; Yang Wang; Christel Kampman; G. Zeeman; Hardy Temmink; Cees J.N. Buisman

Direct anaerobic treatment of municipal waste waters allows for energy recovery in the form of biogas. A further decrease in the energy requirement for waste water treatment can be achieved by removing the ammonium in the anaerobic effluent with an autotrophic process, such as anammox. Until now, anammox has mainly been used for treating warm (>30 °C) and concentrated (>500 mg N/L) waste streams. Application in the water line of municipal waste water treatment poses the challenges of a lower nitrogen concentration (<100 mg N/L) and a lower temperature (≤ 20 °C). Good biomass retention and a short HRT are required to achieve a sufficiently high nitrogen loading rate. For this purpose a 4.5 L gaslift reactor was inoculated with a small amount of anammox granules and operated for 253 days at 20 °C. The synthetic influent contained (69 ± 5) mg (NH(4)(+) + NO(2)(-))/L and 20 vol.% of anaerobically stabilised effluent. Results showed a clear increase in nitrogen loading rate (NLR) up to 0.31 g (NH(4) + NO(2))-N/(L × d) at a hydraulic retention time (HRT) of 5.3 h. A low effluent concentration of 0.03-0.17 mg (NH(4)(+)+NO(2)(-))-N/L could be achieved. Anammox biomass was retained as granules and as a biofilm on the reactor walls, which contributed 54 and 46%, respectively, towards total activity. The biomass was further characterised by an estimated net growth rate of 0.040 d(-1) and an apparent activation energy of 72 kJ/mol. The results presented in this paper showed that anammox bacteria can be applied for autotrophic nitrogen removal from the water line at a municipal waste water treatment plant. Combining direct anaerobic treatment with autotrophic nitrogen removal opens opportunities for energy-efficient treatment of municipal waste waters.


Bioresource Technology | 2014

High specific activity for anammox bacteria enriched from activated sludge at 10 °C

Tim L.G. Hendrickx; Christel Kampman; G. Zeeman; Hardy Temmink; Ziye Hu; Boran Kartal; Cees J.N. Buisman

Anammox in the water line of a waste water treatment plant (WWTP) saves energy for aeration and allows for recovering biogas from organic material. Main challenges for applying the anammox process in the water line are related to the low temperature of <20°C, causing a significant drop in the specific anammox activity. The aim of this research was to enrich a cold-adapted anammox species, with a high specific activity. This was achieved in a 4.2L reactor operated at 10°C, fed with 61 mg (NH4+NO2)-N/L and inoculated with activated sludge from two selected municipal WWTPs. Candidatus Brocadia fulgida was the dominant species in the enriched biomass, with a specific activity was 30-44 mg N/(g VS d). This is two times higher than previously reported at 10°C, which is beneficial for full scale application. Biomass yield was 0.046 g biomass/g N converted, similar to that at higher temperatures.


Bioresource Technology | 2009

Aquatic worms eating waste sludge in a continuous system

Tim L.G. Hendrickx; Hardy Temmink; H.J.H. Elissen; Cees J.N. Buisman

Aquatic worms are a biological approach to decrease the amount of biological waste sludge produced at waste water treatment plants. A new reactor concept was recently introduced in which the aquatic oligochaete Lumbriculus variegatus is immobilised in a carrier material. The current paper describes the experiments that were performed to test whether this concept could also be applied in continuous operation, for which worm growth is an important condition. This was tested for two mesh sizes of the carrier material. With an increase in mesh size from 300 to 350 microm, worm biomass growth was possible in the reactor at a rate of 0.013 d(-1) and with a yield of 0.13 g dw/g VSS digested by the worms. Mass balances over the worm reactors showed the importance of correcting for natural sludge breakdown, as the contribution of the worms to total VSS reduction was 41-71%.


Water Research | 2009

The effect of operating conditions on aquatic worms eating waste sludge.

Tim L.G. Hendrickx; Hardy Temmink; H.J.H. Elissen; Cees J.N. Buisman

Several techniques are available for dealing with the waste sludge produced in biological waste water treatment. A biological approach uses aquatic worms to consume and partially digest the waste sludge. In our concept for a worm reactor, the worms (Lumbriculus variegatus) are immobilised in a carrier material. For correct sizing and operation of such a worm reactor, the effect of changes in dissolved oxygen (DO) concentration, ammonia concentration, temperature and light exposure were studied in sequencing batch experiments. DO concentration had an effect on both sludge consumption rate and sludge reduction efficiency. Sludge consumption rate was four times higher at DO concentrations above 8.1 mg/L, when compared to DO concentrations below 2.5 mg/L. Sludge reduction was 36 and 77% at these respective DO concentrations. The effect is most likely the result of a difference in gut residence time. An increase in unionised ammonia concentration drastically decreased the consumption rate. Ammonia is released by the worms at a rate of 0.02 mg N/mg TSS digested; therefore, replacing the effluent in the worm reactor is required to maintain a low ammonia concentration. The highest sludge consumption rates were measured at a temperature around 15 degrees C, whilst the highest TSS reduction was achieved at 10 degrees C. Not exposing the worms to light did not affect consumption or digestion rates. High temperatures (above 25 degrees C) as well as low DO concentrations (below 1 mg/L) in the worm reactor should be avoided as these lead to significant decreases in the number of worms. The main challenges for applying the worm reactor at a larger scale are the supply of oxygen to the worms and maintaining a low ammonia concentration in the worm reactor. Applying a worm reactor at a waste water treatment plant was estimated to increase the oxygen consumption and the ammonia load by 15-20% and 5% respectively.


Journal of Hazardous Materials | 2010

Aquatic worms eat sludge: mass balances and processing of worm faeces.

Tim L.G. Hendrickx; Hardy Temmink; H.J.H. Elissen; Cees J.N. Buisman

Reduction of the amount of waste sludge from waste water treatment plants (WWTPs) can be achieved with the aquatic worm Lumbriculus variegatus in a new reactor concept. In addition to reducing the amount of waste sludge, further processing of produced worm faeces and released nutrients should also be considered. This study gives the mass balances for sludge consumed by L. variegatus, showing the fate of the consumed organic material, nutrients and heavy metals associated with the sludge. A distinction is made between conversion into worm biomass, release as dissolved metabolites and what remains in the worm faeces. The results showed that 39% of the nitrogen and 12% of the phosphorus in the sludge digested by the worms are used in the formation of new worm biomass, which has potential for reuse. Experiments showed that settling of the worm faeces leads to a factor 2.5 higher solids concentration, compared to settling of waste sludge. This could lead to a 67% reduction of the volumetric load on thickening equipment. The worm reactor is expected to be most interesting for smaller WWTPs where a decrease on the volumetric load on sludge handling operations will have most impact.


Bioresource Technology | 2013

Co-digestion to support low temperature anaerobic pretreatment of municipal sewage in a UASB-digester.

Lei Zhang; Tim L.G. Hendrickx; Christel Kampman; Hardy Temmink; G. Zeeman

The aim of this work was to demonstrate that co-digestion improves soluble sewage COD removal efficiency in treatment of low temperature municipal sewage by a UASB-digester system. A pilot scale UASB-digester system was applied to treat real municipal sewage, and glucose was chosen as a model co-substrate. Co-substrate was added in the sludge digester to produce additional methanogenic biomass, which was continuously recycled to inoculate the UASB reactor. Soluble sewage COD removal efficiency increased from 6 to 23%, which was similar to its biological methane potential (BMP). Specific methanogenic activity of the UASB and of the digester sludge at 15°C tripled to a value respectively of 43 and 39 mg CH4-COD/(g VSS d). Methane production in the UASB reactor increased by more than 90% due to its doubled methanogenic capacity. Therefore, co-digestion is a suitable approach to support a UASB-digester for pretreatment of low temperature municipal sewage.


Bioresource Technology | 2010

Aquatic worms grown on biosolids: biomass composition and potential applications.

H.J.H. Elissen; W.J. Mulder; Tim L.G. Hendrickx; H.W. Elbersen; B. Beelen; Hardy Temmink; Cees J.N. Buisman

The increasing production of biological waste sludge from wastewater treatment plants is a problem, because stricter legislation inhibits the use of traditional disposal methods. The use of the aquatic worm Lumbriculus variegatus can minimise sludge production. Because the worms can feed and grow on this waste sludge, valuable compounds that are present in the sludge can be recovered by the worms. This paper describes a systematic approach for finding possible applications of the produced biomass. The worm biomass mainly consists of protein and smaller fractions of fat, sugar and ash. It also contains low concentrations of heavy metals. The potential produced amount is relatively small, compared to other waste streams, and is produced decentrally. Therefore, the most promising applications are specific components of the biomass, for example specific amino acids or fatty acids. However, until the process is optimized and there is a stable supply of worms, the focus should be on simple applications, later on followed by specific applications, depending on the market demand. Worm biomass grown on clean sludges has a broader application potential, for example as consumption fish feed.


Water Research | 2011

Operation of an aquatic worm reactor suitable for sludge reduction at large scale

Tim L.G. Hendrickx; Hellen H.J. Elissen; Hardy Temmink; Cees J.N. Buisman

Treatment of domestic waste water results in the production of waste sludge, which requires costly further processing. A biological method to reduce the amount of waste sludge and its volume is treatment in an aquatic worm reactor. The potential of such a worm reactor with the oligochaete Lumbriculus variegatus has been shown at small scale. For scaling up purposes, a new configuration of the reactor was designed, in which the worms were positioned horizontally in the carrier material. This was tested in a continuous experiment of 8 weeks where it treated all the waste sludge from a lab-scale activated sludge process. The results showed a higher worm growth rate compared to previous experiments with the old configuration, whilst nutrient release was similar. The new configuration has a low footprint and allows for easy aeration and faeces collection, thereby making it suitable for full scale application.


Water Research | 2010

Design parameters for sludge reduction in an aquatic worm reactor.

Tim L.G. Hendrickx; Hardy Temmink; H.J.H. Elissen; Cees J.N. Buisman

Reduction and compaction of biological waste sludge from waste water treatment plants (WWTPs) can be achieved with the aquatic worm Lumbriculus variegatus. In our reactor concept for a worm reactor, the worms are immobilised in a carrier material. The size of a worm reactor will therefore mainly be determined by the sludge consumption rate per unit of surface area. This design parameter was determined in sequencing batch experiments using sludge from a municipal WWTP. Long-term experiments using carrier materials with 300 and 350 microm mesh sizes showed surface specific consumption rates of 45 and 58 g TSS/(m(2)d), respectively. Using a 350 microm mesh will therefore result in a 29% smaller reactor compared to using a 300 microm mesh. Large differences in consumption rates were found between different sludge types, although it was not clear what caused these differences. Worm biomass growth and decay rate were determined in sequencing batch experiments. The decay rate of 0.023 d(-1) for worms in a carrier material was considerably higher than the decay rate of 0.018 d(-1) for free worms. As a result, the net worm biomass growth rate for free worms of 0.026 d(-1) was much higher than the 0.009-0.011 d(-1) for immobilised worms. Finally, the specific oxygen uptake rate of the worms was determined at 4.9 mg O(2)/(gwwd), which needs to be supplied to the worms by aeration of the water compartment in the worm reactor.


Water Science and Technology | 2012

The effect of sludge recirculation rate on a UASB-digester treating domestic sewage at 15 °C

Lei Zhang; Tim L.G. Hendrickx; Christel Kampman; G. Zeeman; Hardy Temmink; Weiguang Li; Cees J.N. Buisman

The anaerobic treatment of low strength domestic sewage at low temperature is an attractive and important topic at present. The upflow anaerobic sludge bed (UASB)-digester system is one of the anaerobic systems to challenge low temperature and concentrations. The effect of sludge recirculation rate on a UASB-digester system treating domestic sewage at 15 °C was studied in this research. A sludge recirculation rate of 0.9, 2.6 and 12.5% of the influent flow rate was investigated. The results showed that the total chemical oxygen demand (COD) removal efficiency rose with increasing sludge recirculation rate. A sludge recirculation rate of 0.9% of the influent flow rate led to organic solids accumulation in the UASB reactor. After the sludge recirculation rate increased from 0.9 to 2.6%, the stability of the UASB sludge was substantially improved from 0.37 to 0.15 g CH₄-COD/g COD, and the bio-gas production in the digester went up from 2.9 to 7.4 L/d. The stability of the UASB sludge and bio-gas production in the digester were not significantly further improved by increasing sludge recirculation rate to 12.5% of the influent flow rate, but the biogas production in the UASB increased from 0.37 to 1.2 L/d. It is recommended to apply a maximum sludge recirculation rate of 2-2.5% of the influent flow rate in a UASB-digester system, as this still allows energy self-sufficiency of the system.

Collaboration


Dive into the Tim L.G. Hendrickx's collaboration.

Top Co-Authors

Avatar

Hardy Temmink

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Cees J.N. Buisman

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

G. Zeeman

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Christel Kampman

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

H.J.H. Elissen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Zhang

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Mike S. M. Jetten

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Theo van Alen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Bob Laarhoven

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge