Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tim Newbold is active.

Publication


Featured researches published by Tim Newbold.


Science | 2014

A mid-term analysis of progress toward international biodiversity targets

Derek P. Tittensor; Matt Walpole; Samantha L. L. Hill; Daniel G. Boyce; Gregory L. Britten; Neil D. Burgess; Stuart H. M. Butchart; Paul W. Leadley; Eugenie C. Regan; Rob Alkemade; Roswitha Baumung; Céline Bellard; Lex Bouwman; Nadine Bowles-Newark; Anna M. Chenery; William W. L. Cheung; Villy Christensen; H. David Cooper; Annabel R. Crowther; Matthew J. R. Dixon; Alessandro Galli; Valérie Gaveau; Richard D. Gregory; Nicolás L. Gutiérrez; Tim Hirsch; Robert Höft; Stephanie R. Januchowski-Hartley; Marion Karmann; Cornelia B. Krug; Fiona Leverington

In 2010, the international community, under the auspices of the Convention on Biological Diversity, agreed on 20 biodiversity-related “Aichi Targets” to be achieved within a decade. We provide a comprehensive mid-term assessment of progress toward these global targets using 55 indicator data sets. We projected indicator trends to 2020 using an adaptive statistical framework that incorporated the specific properties of individual time series. On current trajectories, results suggest that despite accelerating policy and management responses to the biodiversity crisis, the impacts of these efforts are unlikely to be reflected in improved trends in the state of biodiversity by 2020. We highlight areas of societal endeavor requiring additional efforts to achieve the Aichi Targets, and provide a baseline against which to assess future progress. Although conservation efforts are accelerating, their impact is unlikely to improve the global state of biodiversity by 2020. Indicators of progress and decline The targets set by the Convention on Biological Diversity in 2010 focused international efforts to alleviate global biodiversity decline. However, many of the consequences of these efforts will not be evident by the 2020 deadline agreed to by governments of 150 countries. Tittensor et al. analyzed data on 55 different biodiversity indicators to predict progress toward the 2020 targets—indicators such as protected area coverage, land-use trends, and endangered species status. The analysis pinpoints the problems and areas that will need the most attention in the next few years. Science, this issue p. 241


Progress in Physical Geography | 2010

Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models

Tim Newbold

To conserve biodiversity, it is necessary to understand how species are distributed and which aspects of the environment determine distributions. In large parts of the world and for the majority of species, data describing distributions are very scarce. Museums, private collections and the historical literature offer a vast source of information on distributions. Records of the occurrence of species from these sources are increasingly being captured in electronic databases and made available over the internet. These records may be very valuable in conservation efforts. However, there are a number of limitations with museum data. These limitations are dealt with in the first part of this review. Even if the limitations of museum data can be overcome, these data present a far-from-complete picture of the distributions of species. Species distribution models offer a means to extrapolate limited information in order to estimate the distributions of species over large areas. The second part of this paper reviews the challenges of developing species distribution models for use with museum data and describes some of the questions that species distribution models have been used to address. Given the rapidly increasing number of museum records of species occurrence available over the internet, a review of their usefulness in conservation and ecology is timely.


Science | 2016

Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment.

Tim Newbold; Lawrence N. Hudson; Andrew P. Arnell; Sara Contu; Adriana De Palma; Simon Ferrier; Samantha L. L. Hill; Andrew J. Hoskins; Igor Lysenko; Helen Phillips; Victoria J. Burton; Charlotte Wen Ting Chng; Susan Emerson; Di Gao; Gwilym Pask-Hale; Jon Hutton; Martin Jung; Katia Sanchez-Ortiz; Benno I. Simmons; Sarah Whitmee; Hanbin Zhang; Jörn P. W. Scharlemann; Andy Purvis

Crossing “safe” limits for biodiversity loss The planetary boundaries framework attempts to set limits for biodiversity loss within which ecological function is relatively unaffected. Newbold et al. present a quantitative global analysis of the extent to which the proposed planetary boundary has been crossed (see the Perspective by Oliver). Using over 2 million records for nearly 40,000 terrestrial species, they modeled the response of biodiversity to land use and related pressures and then estimated, at a spatial resolution of ∼1 km2, the extent and spatial patterns of changes in local biodiversity. Across 65% of the terrestrial surface, land use and related pressures have caused biotic intactness to decline beyond 10%, the proposed “safe” planetary boundary. Changes have been most pronounced in grassland biomes and biodiversity hotspots. Science, this issue p. 288; see also p. 220 Land use has reduced biosphere intactness below safe limits across 65% of Earth’s terrestrial surface, especially in grasslands. Land use and related pressures have reduced local terrestrial biodiversity, but it is unclear how the magnitude of change relates to the recently proposed planetary boundary (“safe limit”). We estimate that land use and related pressures have already reduced local biodiversity intactness—the average proportion of natural biodiversity remaining in local ecosystems—beyond its recently proposed planetary boundary across 58.1% of the world’s land surface, where 71.4% of the human population live. Biodiversity intactness within most biomes (especially grassland biomes), most biodiversity hotspots, and even some wilderness areas is inferred to be beyond the boundary. Such widespread transgression of safe limits suggests that biodiversity loss, if unchecked, will undermine efforts toward long-term sustainable development.


PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES , 281 (1792) (2014) | 2014

A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures

Tim Newbold; Lawrence N. Hudson; Helen Phillips; Samantha L. L. Hill; Sara Contu; Igor Lysenko; A. Blandon; Stuart H. M. Butchart; Hollie Booth; Julie Day; A. De Palma; Michelle L. K. Harrison; L. Kirkpatrick; E. Pynegar; Alexandra Robinson; Jake Simpson; Georgina M. Mace; Jörn P. W. Scharlemann; Andy Purvis

Habitat loss and degradation, driven largely by agricultural expansion and intensification, present the greatest immediate threat to biodiversity. Tropical forests harbour among the highest levels of terrestrial species diversity and are likely to experience rapid land-use change in the coming decades. Synthetic analyses of observed responses of species are useful for quantifying how land use affects biodiversity and for predicting outcomes under land-use scenarios. Previous applications of this approach have typically focused on individual taxonomic groups, analysing the average response of the whole community to changes in land use. Here, we incorporate quantitative remotely sensed data about habitats in, to our knowledge, the first worldwide synthetic analysis of how individual species in four major taxonomic groups—invertebrates, ‘herptiles’ (reptiles and amphibians), mammals and birds—respond to multiple human pressures in tropical and sub-tropical forests. We show significant independent impacts of land use, human vegetation offtake, forest cover and human population density on both occurrence and abundance of species, highlighting the value of analysing multiple explanatory variables simultaneously. Responses differ among the four groups considered, and—within birds and mammals—between habitat specialists and habitat generalists and between narrow-ranged and wide-ranged species.


Proceedings. Biological sciences / The Royal Society , 280 (1771) 20131452-. (2013) | 2013

Predictive systems ecology

Matthew R. Evans; Mike Bithell; Stephen J. Cornell; Sasha R. X. Dall; Sandra Díaz; Stephen Emmott; Bruno Ernande; Volker Grimm; David J. Hodgson; Simon L. Lewis; Georgina M. Mace; Michael D. Morecroft; Aristides Moustakas; Eugene J. Murphy; Tim Newbold; Ken Norris; Owen L. Petchey; Matthew J. Smith; Justin M. J. Travis; Tim G. Benton

Human societies, and their well-being, depend to a significant extent on the state of the ecosystems that surround them. These ecosystems are changing rapidly usually in response to anthropogenic changes in the environment. To determine the likely impact of environmental change on ecosystems and the best ways to manage them, it would be desirable to be able to predict their future states. We present a proposal to develop the paradigm of predictive systems ecology, explicitly to understand and predict the properties and behaviour of ecological systems. We discuss the necessary and desirable features of predictive systems ecology models. There are places where predictive systems ecology is already being practised and we summarize a range of terrestrial and marine examples. Significant challenges remain but we suggest that ecology would benefit both as a scientific discipline and increase its impact in society if it were to embrace the need to become more predictive.


PLOS Biology | 2014

Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model.

Michael B. J. Harfoot; Tim Newbold; Derek P. Tittensor; Stephen Emmott; Jon Hutton; Vassily Lyutsarev; Matthew J. Smith; Jörn P. W. Scharlemann; Drew W. Purves

This paper presents the first mathematical model that attempts to represent the biology and behavior of all individual organisms globally, taking us a step closer to holistic ecological and conservation science founded on mechanistic predictions.


Nature | 2013

Ecosystems: Time to model all life on Earth.

Drew W. Purves; Jörn P. W. Scharlemann; Mike Harfoot; Tim Newbold; Derek P. Tittensor; Jon Hutton; Stephen Emmott

To help transform our understanding of the biosphere, ecologists — like climate scientists — should simulate whole ecosystems, argue Drew Purves and colleagues.


Nature Communications | 2016

Local biodiversity is higher inside than outside terrestrial protected areas worldwide

Claudia L. Gray; Samantha L. L. Hill; Tim Newbold; Lawrence N. Hudson; Luca Börger; Sara Contu; Andrew J. Hoskins; Simon Ferrier; Andy Purvis; Jörn P. W. Scharlemann

Protected areas are widely considered essential for biodiversity conservation. However, few global studies have demonstrated that protection benefits a broad range of species. Here, using a new global biodiversity database with unprecedented geographic and taxonomic coverage, we compare four biodiversity measures at sites sampled in multiple land uses inside and outside protected areas. Globally, species richness is 10.6% higher and abundance 14.5% higher in samples taken inside protected areas compared with samples taken outside, but neither rarefaction-based richness nor endemicity differ significantly. Importantly, we show that the positive effects of protection are mostly attributable to differences in land use between protected and unprotected sites. Nonetheless, even within some human-dominated land uses, species richness and abundance are higher in protected sites. Our results reinforce the global importance of protected areas but suggest that protection does not consistently benefit species with small ranges or increase the variety of ecological niches.


Biodiversity and Conservation | 2009

Effect of characteristics of butterfly species on the accuracy of distribution models in an arid environment.

Tim Newbold; Tom Reader; Samy Zalat; Ahmed El-Gabbas; Francis Gilbert

Species distribution models show great promise as tools for conservation ecology. However, their accuracy has been shown to vary widely among taxa. There is some evidence that this variation is partly owing to ecological differences among species, which make them more or less easy to model. Here we test the effect of five characteristics of Egyptian butterfly species on the accuracy of distribution models, the first such comparison for butterflies in an arid environment. Unlike most previous studies, we perform independent contrasts to control for species relatedness. We show that range size, both globally and locally, has a negative effect on model accuracy. The results shed light on causes of variation in distribution model accuracy among species, and hence have relevance to practitioners using species distribution models in conservation decision making.


BioScience | 2016

Harmonizing Biodiversity Conservation and Productivity in the Context of Increasing Demands on Landscapes

Ralf Seppelt; Michael Beckmann; Silvia Ceauşu; Anna F. Cord; Katharina Gerstner; Jessica Gurevitch; Stephan Kambach; Stefan Klotz; Chase Mendenhall; Helen Phillips; Kristin Powell; Peter H. Verburg; Willem Verhagen; Marten Winter; Tim Newbold

Abstract Biodiversity conservation and agricultural production are often seen as mutually exclusive objectives. Strategies for reconciling them are intensely debated. We argue that harmonization between biodiversity conservation and crop production can be improved by increasing our understanding of the underlying relationships between them. We provide a general conceptual framework that links biodiversity and agricultural production through the separate relationships between land use and biodiversity and between land use and production. Hypothesized relationships are derived by synthesizing existing empirical and theoretical ecological knowledge. The framework suggests nonlinear relationships caused by the multifaceted impacts of land use (composition, configuration, and intensity). We propose solutions for overcoming the apparently dichotomous aims of maximizing either biodiversity conservation or agricultural production and suggest new hypotheses that emerge from our proposed framework.

Collaboration


Dive into the Tim Newbold's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andy Purvis

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Lawrence N. Hudson

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Sara Contu

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor Lysenko

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samantha L. L. Hill

United Nations Environment Programme

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge