Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tim W. Overton is active.

Publication


Featured researches published by Tim W. Overton.


Journal of Biological Chemistry | 2006

A Reassessment of the FNR Regulon and Transcriptomic Analysis of the Effects of Nitrate, Nitrite, NarXL, and NarQP as Escherichia coli K12 Adapts from Aerobic to Anaerobic Growth

Chrystala Constantinidou; Jon L. Hobman; L. A. Griffiths; Mala D. Patel; Charles W. Penn; Jeffrey A. Cole; Tim W. Overton

The transcription factor FNR, the regulator of fumarate and nitrate reduction, regulates major changes as Escherichia coli adapts from aerobic to anaerobic growth. In an anaerobic glycerol/trimethylamine N-oxide/fumarate medium, the fnr mutant grew as well as the parental strain, E. coli K12 MG1655, enabling us to reveal the response to oxygen, nitrate, and nitrite in the absence of glucose repression or artifacts because of variations in growth rate. Hence, many of the discrepancies between previous microarray studies of the E. coli FNR regulon were resolved. The current microarray data confirmed 31 of the previously characterized FNR-regulated operons. Forty four operons not previously known to be included in the FNR regulon were activated by FNR, and a further 28 operons appeared to be repressed. For each of these operons, a match to the consensus FNR-binding site sequence was identified. The FNR regulon therefore minimally includes at least 103, and possibly as many as 115, operons. Comparison of transcripts in the parental strain and a narXL deletion mutant revealed that transcription of 51 operons is activated, directly or indirectly, by NarL, and a further 41 operons are repressed. The narP gene was also deleted from the narXL mutant to reveal the extent of regulation by phosphorylated NarP. Fourteen promoters were more active in the narP+ strain than in the mutant, and a further 37 were strongly repressed. This is the first report that NarP might function as a global repressor as well as a transcription activator. The data also revealed possible new defense mechanisms against reactive nitrogen species.


Journal of Bacteriology | 2007

The NsrR Regulon of Escherichia coli K-12 Includes Genes Encoding the Hybrid Cluster Protein and the Periplasmic, Respiratory Nitrite Reductase

Nina Filenko; Stephen Spiro; Douglas F. Browning; Derrick J. P. Squire; Tim W. Overton; Jeffrey A. Cole; Chrystala Constantinidou

Successful pathogens must be able to protect themselves against reactive nitrogen species generated either as part of host defense mechanisms or as products of their own metabolism. The regulatory protein NsrR (a member of the Rrf2 family of transcription factors) plays key roles in this stress response. Microarray analysis revealed that NsrR represses nine operons encoding 20 genes in Escherichia coli MG1655, including the hmpA, ytfE, and ygbA genes that were previously shown to be regulated by NsrR. Novel NsrR targets revealed by this study include hcp-hcr (which were predicted in a recent bioinformatic study to be NsrR regulated) and the well-studied nrfA promoter that directs the expression of the periplasmic respiratory nitrite reductase. Conversely, transcription from the ydbC promoter is strongly activated by NsrR. Regulation of the nrf operon by NsrR is consistent with the ability of the periplasmic nitrite reductase to reduce nitric oxide and hence protect against reactive nitrogen species. Gel retardation assays were used to show that both FNR and NarL bind to the hcp promoter. The expression of hcp and the contiguous gene hcr is not induced by hydroxylamine. As hmpA and ytfE encode a nitric oxide reductase and a mechanism to repair iron-sulfur centers damaged by nitric oxide, the demonstration that hcp-hcr, hmpA, and ytfE are the three transcripts most tightly regulated by NsrR highlights the possibility that the hybrid cluster protein, HCP, might also be part of a defense mechanism against reactive nitrogen stress.


Journal of Biological Chemistry | 2006

Coordinated Regulation of the Neisseria gonorrhoeae-truncated Denitrification Pathway by the Nitric Oxide-sensitive Repressor, NsrR, and Nitrite-insensitive NarQ-NarP

Tim W. Overton; Rebekah N. Whitehead; Ying Li; Lori A. S. Snyder; Nigel J. Saunders; H. Smith; Jeffrey A. Cole

Neisseria gonorrhoeae survives anaerobically by reducing nitrite to nitrous oxide catalyzed by the nitrite and nitric oxide reductases, AniA and NorB. PaniA is activated by FNR (regulator of fumarate and nitrate reduction), the two-component regulatory system NarQ-NarP, and induced by nitrite; PnorB is induced by NO independently of FNR by an uncharacterized mechanism. We report the results of microarray analysis, bioinformatic analysis, and chromatin immunoprecipitation, which revealed that only five genes with readily identified NarP-binding sites are differentially expressed in narP+ and narP strains. These include three genes implicated in the truncated gonococcal denitrification pathway: aniA, norB, and narQ. We also report that (i) nitrite induces aniA transcription in a narP mutant; (ii) nitrite induction involves indirect inactivation by nitric oxide of a gonococcal repressor, NsrR, identified from a multigenome bioinformatic study; (iii) in an nsrR mutant, aniA, norB, and dnrN (encoding a putative reactive nitrogen species response protein) were expressed constitutively in the absence of nitrite, suggesting that NsrR is the only NO-sensing transcription factor in N. gonorrhoeae; and (iv) NO rather than nitrite is the ligand to which NsrR responds. When expressed in Escherichia coli, gonococcal NarQ and chimaeras of E. coli and gonococcal NarQ are ligand-insensitive and constitutively active: a “locked-on” phenotype. We conclude that genes involved in the truncated denitrification pathway of N. gonorrhoeae are key components of the small NarQP regulon, that NarP indirectly regulates PnorB by stimulating NO production by AniA, and that NsrR plays a critical role in enabling gonococci to evade NO generated as a host defense mechanism.


Journal of Bacteriology | 2008

Widespread distribution in pathogenic bacteria of di-iron proteins that repair oxidative and nitrosative damage to iron-sulfur centers.

Tim W. Overton; Marta C. Justino; Ying Li; Joana M. Baptista; Ana M.P. Melo; Jeffrey A. Cole; Lígia M. Saraiva

Expression of two genes of unknown function, Staphylococcus aureus scdA and Neisseria gonorrhoeae dnrN, is induced by exposure to oxidative or nitrosative stress. We show that DnrN and ScdA are di-iron proteins that protect their hosts from damage caused by exposure to nitric oxide and to hydrogen peroxide. Loss of FNR-dependent activation of aniA expression and NsrR-dependent repression of norB and dnrN expression on exposure to NO was restored in the gonococcal parent strain but not in a dnrN mutant, suggesting that DnrN is necessary for the repair of NO damage to the gonococcal transcription factors, FNR and NsrR. Restoration of aconitase activity destroyed by exposure of S. aureus to NO or H2O2 required a functional scdA gene. Electron paramagnetic resonance spectra of recombinant ScdA purified from Escherichia coli confirmed the presence of a di-iron center. The recombinant scdA plasmid, but not recombinant plasmids encoding the complete Escherichia coli sufABCDSE or iscRSUAhscBAfdx operons, complemented repair defects of an E. coli ytfE mutant. Analysis of the protein sequence database revealed the importance of the two proteins based on the widespread distribution of highly conserved homologues in both gram-positive and gram-negative bacteria that are human pathogens. We provide in vivo and in vitro evidence that Fe-S clusters damaged by exposure to NO and H2O2 can be repaired by this new protein family, for which we propose the name repair of iron centers, or RIC, proteins.


Drug Discovery Today | 2014

Recombinant protein production in bacterial hosts

Tim W. Overton

The production of recombinant proteins is crucial for both the development of new protein drugs and the structural determination of drug targets. As such, recombinant protein production has a major role in drug development. Bacterial hosts are commonly used for the production of recombinant proteins, accounting for approximately 30% of current biopharmaceuticals on the market. In this review, I introduce fundamental concepts in recombinant protein production in bacteria, from drug development to production scales. Recombinant protein production processes can often fail, but how can this failure be minimised to rapidly deliver maximum yields of high-quality protein and so accelerate drug discovery?


Molecular Microbiology | 2000

Identification of transcription activators that regulate gonococcal adaptation from aerobic to anaerobic or oxygen-limited growth

Sarah Lissenden; Sudesh B. Mohan; Tim W. Overton; Tess Regan; Helen Crooke; Jean A. Cardinale; Tracey C. Householder; Phillip Adams; C. David O'conner; Virginia L. Clark; H. Smith; Jeffrey A. Cole

Analysis of the Neisseria gonorrhoeae DNA sequence database revealed the presence of two genes, one encoding a protein predicted to be 37.5% identical (50% similar) in amino acid sequence to the Escherichia coli FNR protein and the other encoding a protein 41% and 42% identical (54 and 51% sequence similarity) to the E. coli NarL and NarP proteins respectively. Both genes have been cloned into E. coli and insertionally inactivated in vitro. The mutated genes have been transformed into gonococci and recombined into the chromosome. The fnr mutation totally abolished and the narP mutation severely diminished the ability of gonococci to: (i) grow anaerobically; (ii) adapt to oxygen‐limited growth; (iii) initiate transcription from the aniA promoter (which directs the expression of a copper‐containing nitrite reductase, AniA, in response to the presence of nitrite); and (iv) reduce nitrite during growth in oxygen‐limited media. The product of nitrite reduction was identified to be nitrous oxide. Immediately upstream of the narL/narP gene is an open reading frame that, if translated, would encode a homologue of the E. coli nitrate‐ and nitrite‐sensing proteins NarX and NarQ. As transcription from the aniA promoter was not activated during oxygen‐limited growth in the presence of nitrate, the gonococcal two‐component regulatory system is designated NarQ–NarP rather than NarX–NarL. As far as we are aware, this is the first well‐documented example of a two‐component regulatory system working in partnership with a transcription activator in pathogenic neisseria. A 45 kDa c‐type cytochrome that was synthesized during oxygen‐limited, but not during oxygen sufficient, growth was identified as a homologue of cytochrome c peroxidases (CCP) of other bacteria. The gene for this cytochrome, designated ccp, was located, and its regulatory region was cloned into the promoter probe vector pLES94. Transcription from the ccp promoter was repressed during aerobic growth and induced during oxygen‐limited growth and was totally FNR dependent, suggesting that the gonococcal FNR protein is a transcription activator of at least two genes. However, unlike AniA, synthesis of the CCP homologue was insensitive to the presence of nitrite during oxygen‐limited growth.


PLOS ONE | 2011

Exposure of Salmonella enterica Serovar Typhimurium to High Level Biocide Challenge Can Select Multidrug Resistant Mutants in a Single Step

Rebekah N. Whitehead; Tim W. Overton; Caroline L. Kemp; Mark A. Webber

Background Biocides are crucial to the prevention of infection by bacteria, particularly with the global emergence of multiply antibiotic resistant strains of many species. Concern has been raised regarding the potential for biocide exposure to select for antibiotic resistance due to common mechanisms of resistance, notably efflux. Methodology/Principal Findings Salmonella enterica serovar Typhimurium was challenged with 4 biocides of differing modes of action at both low and recommended-use concentration. Flow cytometry was used to investigate the physiological state of the cells after biocide challenge. After 5 hours exposure to biocide, live cells were sorted by FACS and recovered. Cells recovered after an exposure to low concentrations of biocide had antibiotic resistance profiles similar to wild-type cells. Live cells were recovered after exposure to two of the biocides at in-use concentration for 5 hours. These cells were multi-drug resistant and accumulation assays demonstrated an efflux phenotype of these mutants. Gene expression analysis showed that the AcrEF multidrug efflux pump was de-repressed in mutants isolated from high-levels of biocide. Conclusions/Significance These data show that a single exposure to the working concentration of certain biocides can select for mutant Salmonella with efflux mediated multidrug resistance and that flow cytometry is a sensitive tool for identifying biocide tolerant mutants. The propensity for biocides to select for MDR mutants varies and this should be a consideration when designing new biocidal formulations.


Biochemical Society Transactions | 2006

Microarray analysis of gene regulation by oxygen, nitrate, nitrite, FNR, NarL and NarP during anaerobic growth of Escherichia coli: new insights into microbial physiology

Tim W. Overton; L. A. Griffiths; Mala D. Patel; Jon L. Hobman; Charles W. Penn; J.A. Cole; Chrystala Constantinidou

RNA was isolated from cultures of Escherichia coli strain MG1655 and derivatives defective in fnr, narXL, or narXL with narP, during aerobic growth, or anaerobic growth in the presence or absence of nitrate or nitrite, in non-repressing media in which both strain MG1655 and an fnr deletion mutant grew at similar rates. Glycerol was used as the non-repressing carbon source and both trimethylamine-N-oxide and fumarate were added as terminal electron acceptors. Microarray data supplemented with bioinformatic data revealed that the FNR (fumarate and nitrate reductase regulator) regulon includes at least 104, and possibly as many as 115, operons, 68 of which are activated and 36 are repressed during anaerobic growth. A total of 51 operons were directly or indirectly activated by NarL in response to nitrate; a further 41 operons were repressed. Four subgroups of genes implicated in management of reactive nitrogen compounds, NO and products of NO metabolism, were identified; they included proteins of previously unknown function. Global repression by the nitrate- and nitrite-responsive two-component system, NarQ-NarP, was shown for the first time. In contrast with the frdABCD, aspA and ansB operons that are repressed only by NarL, the dcuB-fumB operon was among 37 operons that are repressed by NarP.


Fems Microbiology Letters | 2009

Exploitation of GFP fusion proteins and stress avoidance as a generic strategy for the production of high-quality recombinant proteins

Yanina R. Sevastsyanovich; Sara Alfasi; Tim W. Overton; Richard M Hall; Jo Jones; Christopher J. Hewitt; Jeffrey A. Cole

A C-terminal green fluorescent protein (GFP) fusion to a model target protein, Escherichia coli CheY, was exploited both as a reporter of the accumulation of soluble recombinant protein, and to develop a generic approach to optimize protein yields. The rapid accumulation of CheY∷GFP expressed from a pET20 vector under the control of an isopropyl-β-d-thiogalactoside (IPTG)-inducible T7 RNA polymerase resulted not only in the well-documented growth arrest but also loss of culturability and overgrowth of the productive population using plasmid-deficient bacteria. The highest yields of soluble CheY∷GFP as judged from the fluorescence levels were achieved using very low concentrations of IPTG, which avoid growth arrest and loss of culturability postinduction. Optimal product yields were obtained with 8 μM IPTG, a concentration so low that insufficient T7 RNA polymerase accumulated to be detectable by Western blot analysis. The improved protocol was shown to be suitable for process scale-up and intensification. It is also applicable to the accumulation of an untagged heterologous protein, cytochrome c(2) from Neisseria gonorrhoeae, which requires both secretion and extensive post-translational modification.


ChemBioChem | 2011

Engineering biofilms for biocatalysis.

A.N. Tsoligkas; Michael Winn; James Bowen; Tim W. Overton; M.J.H. Simmons; Rebecca J. M. Goss

Biofilm, friend not foe: Single species biofilms can be engineered to form robust biocatalysts with greater catalytic activity and significantly improved catalytic longevity than purified and immobilised enzymes. We report the engineering, structural analysis and biocatalytic capability of a biofilm that can mediate the conversion of serine and haloindoles to halotryptophans.

Collaboration


Dive into the Tim W. Overton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.J.H. Simmons

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Li

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Smith

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge