Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca J. M. Goss is active.

Publication


Featured researches published by Rebecca J. M. Goss.


BMC Biology | 2010

A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus

Jörg Barke; Ryan F. Seipke; Sabine Grüschow; Darren Heavens; Nizar Drou; Mervyn J. Bibb; Rebecca J. M. Goss; Douglas W. Yu; Matthew I. Hutchings

BackgroundAttine ants live in an intensely studied tripartite mutualism with the fungus Leucoagaricus gongylophorus, which provides food to the ants, and with antibiotic-producing actinomycete bacteria. One hypothesis suggests that bacteria from the genus Pseudonocardia are the sole, co-evolved mutualists of attine ants and are transmitted vertically by the queens. A recent study identified a Pseudonocardia-produced antifungal, named dentigerumycin, associated with the lower attine Apterostigma dentigerum consistent with the idea that co-evolved Pseudonocardia make novel antibiotics. An alternative possibility is that attine ants sample actinomycete bacteria from the soil, selecting and maintaining those species that make useful antibiotics. Consistent with this idea, a Streptomyces species associated with the higher attine Acromyrmex octospinosus was recently shown to produce the well-known antifungal candicidin. Candicidin production is widespread in environmental isolates of Streptomyces, so this could either be an environmental contaminant or evidence of recruitment of useful actinomycetes from the environment. It should be noted that the two possibilities for actinomycete acquisition are not necessarily mutually exclusive.ResultsIn order to test these possibilities we isolated bacteria from a geographically distinct population of A. octospinosus and identified a candicidin-producing Streptomyces species, which suggests that they are common mutualists of attine ants, most probably recruited from the environment. We also identified a Pseudonocardia species in the same ant colony that produces an unusual polyene antifungal, providing evidence for co-evolution of Pseudonocardia with A. octospinosus.ConclusionsOur results show that a combination of co-evolution and environmental sampling results in the diversity of actinomycete symbionts and antibiotics associated with attine ants.


The Plant Cell | 2009

A Serine Carboxypeptidase-Like Acyltransferase Is Required for Synthesis of Antimicrobial Compounds and Disease Resistance in Oats

Sam T. Mugford; Xiaoquan Qi; Saleha Bakht; Lionel Hill; Eva Wegel; Richard K. Hughes; Kalliopi Papadopoulou; Rachel E. Melton; Mark R. Philo; Frank Sainsbury; George P. Lomonossoff; Abhijeet Deb Roy; Rebecca J. M. Goss; Anne Osbourn

Serine carboxypeptidase-like (SCPL) proteins have recently emerged as a new group of plant acyltransferases. These enzymes share homology with peptidases but lack protease activity and instead are able to acylate natural products. Several SCPL acyltransferases have been characterized to date from dicots, including an enzyme required for the synthesis of glucose polyesters that may contribute to insect resistance in wild tomato (Solanum pennellii) and enzymes required for the synthesis of sinapate esters associated with UV protection in Arabidopsis thaliana. In our earlier genetic analysis, we identified the Saponin-deficient 7 (Sad7) locus as being required for the synthesis of antimicrobial triterpene glycosides (avenacins) and for broad-spectrum disease resistance in diploid oat (Avena strigosa). Here, we report on the cloning of Sad7 and show that this gene encodes a functional SCPL acyltransferase, SCPL1, that is able to catalyze the synthesis of both N-methyl anthraniloyl- and benzoyl-derivatized forms of avenacin. Sad7 forms part of an operon-like gene cluster for avenacin synthesis. Oat SCPL1 (SAD7) is the founder member of a subfamily of monocot-specific SCPL proteins that includes predicted proteins from rice (Oryza sativa) and other grasses with potential roles in secondary metabolism and plant defense.


PLOS ONE | 2011

A Single Streptomyces Symbiont Makes Multiple Antifungals to Support the Fungus Farming Ant Acromyrmex octospinosus

Ryan F. Seipke; Joerg Barke; Charles A. Brearley; Lionel Hill; Douglas W. Yu; Rebecca J. M. Goss; Matthew I. Hutchings

Attine ants are dependent on a cultivated fungus for food and use antibiotics produced by symbiotic Actinobacteria as weedkillers in their fungus gardens. Actinobacterial species belonging to the genera Pseudonocardia, Streptomyces and Amycolatopsis have been isolated from attine ant nests and shown to confer protection against a range of microfungal weeds. In previous work on the higher attine Acromyrmex octospinosus we isolated a Streptomyces strain that produces candicidin, consistent with another report that attine ants use Streptomyces-produced candicidin in their fungiculture. Here we report the genome analysis of this Streptomyces strain and identify multiple antibiotic biosynthetic pathways. We demonstrate, using gene disruptions and mass spectrometry, that this single strain has the capacity to make candicidin and multiple antimycin compounds. Although antimycins have been known for >60 years we report the sequence of the biosynthetic gene cluster for the first time. Crucially, disrupting the candicidin and antimycin gene clusters in the same strain had no effect on bioactivity against a co-evolved nest pathogen called Escovopsis that has been identified in ∼30% of attine ant nests. Since the Streptomyces strain has strong bioactivity against Escovopsis we conclude that it must make additional antifungal(s) to inhibit Escovopsis. However, candicidin and antimycins likely offer protection against other microfungal weeds that infect the attine fungal gardens. Thus, we propose that the selection of this biosynthetically prolific strain from the natural environment provides A. octospinosus with broad spectrum activity against Escovopsis and other microfungal weeds.


Journal of the American Chemical Society | 2010

Gene Expression Enabling Synthetic Diversification of Natural Products: Chemogenetic Generation of Pacidamycin Analogs

Abhijeet Deb Roy; Sabine Grüschow; Nickiwe Cairns; Rebecca J. M. Goss

Introduction of prnA, the halogenase gene from pyrrolnitrin biosynthesis, into Streptomyces coeruleorubidus resulted in efficient in situ chlorination of the uridyl peptide antibotic pacidamycin. The installed chlorine provided a selectably functionalizable handle enabling synthetic modification of the natural product using mild cross-coupling conditions in crude aqueous extracts of the culture broth.


ChemBioChem | 2009

New Pacidamycin Antibiotics Through Precursor-Directed Biosynthesis

Sabine Grüschow; Emma J. Rackham; Benjamin Elkins; Philip L. A. Newill; Lionel Hill; Rebecca J. M. Goss

Pacidamycins, mureidomycins and napsamycins are structurally related uridyl peptide antibiotics that inhibit translocase I, an as yet clinically unexploited target. This potentially important bioactivity coupled to the biosynthetically intriguing structure of pacidamycin make this natural product a fascinating subject for study. A precursor‐directed biosynthesis approach was employed in order to access new pacidamycin derivatives. Strikingly, the biosynthetic machinery exhibited highly relaxed substrate specificity with the majority of the tryptophan analogues that were administered; this resulted in the production of new pacidamycin derivatives. Remarkably, 2‐methyl‐, 7‐methyl‐, 7‐chloro‐ and 7‐bromotryptophans produced their corresponding pacidamycin analogues in larger amounts than the natural pacidamycin. Low levels or no incorporation was observed for tryptophans substituted at positions 4, 5 and 6. The ability to generate bromo‐ and chloropacidamycins opens up the possibility of further functionalising these compounds through chemical cross‐coupling in order to access a much larger family of derivatives.


ChemBioChem | 2010

Pacidamycin Biosynthesis: Identification and Heterologous Expression of the First Uridyl Peptide Antibiotic Gene Cluster

Emma J. Rackham; Sabine Grüschow; Amany E. Ragab; Shilo Dickens; Rebecca J. M. Goss

The pacidamycins are antimicrobial nucleoside antibiotics produced by Streptomyces coeruleorubidus that inhibit translocase I, an essential bacterial enzyme yet to be clinically targeted. The novel pacidamycin scaffold is composed of a pseudopeptide backbone linked by a unique exocyclic enamide to an atypical 3′‐deoxyuridine nucleoside. In addition, the peptidyl chain undergoes a double inversion caused by the incorporation of a diamino acid residue and a rare internal ureido moiety. The pacidamycin gene cluster was identified and sequenced, thereby providing the first example of a biosynthetic cluster for a member of the uridyl peptide family of antibiotics. Analysis of the 22 ORFs provided an insight into the biosynthesis of the unique structural features of the pacidamycins. Heterologous expression in Streptomyces lividans resulted in the production of pacidamycin D and the newly identified pacidamycin S, thus confirming the identity of the pacidamycin biosynthetic gene cluster. Identification of this cluster will enable the generation of new uridyl peptide antibiotics through combinatorial biosynthesis. The concise cluster will provide a useful model system through which to gain a fundamental understanding of the way in which nonribosomal peptide synthetases interact.


Current Opinion in Chemical Biology | 2013

Scope and potential of halogenases in biosynthetic applications

Duncan R. M. Smith; Sabine Grüschow; Rebecca J. M. Goss

A large and diverse series of halogenated natural products exist. In many of these compounds the halogen is important to biological activity and bioavailability. We now recognise that nature has developed many different halogenation strategies for which well-known enzyme classes such as haem oxidases or flavin-dependent oxidases have been adapted. Enzymes capable of halogenating all kinds of different chemical groups from electron-rich to electron-poor, from aromatic to aliphatic have been characterised. Given that synthetic halogenation reactions are not trivial transformations and that halogenated molecules possess pharmaceutical usefulness, it will be worth investing into further research of halogenating enzymes.


Organic Letters | 2014

The First One-Pot Synthesis of l-7-Iodotryptophan from 7-Iodoindole and Serine, and an Improved Synthesis of Other l-7-Halotryptophans

Duncan R. M. Smith; Tom Willemse; Danai Stella Gkotsi; Wim Schepens; Bert U. W. Maes; Steven Ballet; Rebecca J. M. Goss

A simple and scalable one-pot biotransformation enables direct access to L-halotryptophans, including L-7-iodotryptophan, from the corresponding haloindoles. The biotransformation utilizes an easy to prepare bacterial cell lysate that may be stored as the lyophilizate for several months and utilized as a catalyst as and when required.


ChemBioChem | 2011

Engineering biofilms for biocatalysis.

A.N. Tsoligkas; Michael Winn; James Bowen; Tim W. Overton; M.J.H. Simmons; Rebecca J. M. Goss

Biofilm, friend not foe: Single species biofilms can be engineered to form robust biocatalysts with greater catalytic activity and significantly improved catalytic longevity than purified and immobilised enzymes. We report the engineering, structural analysis and biocatalytic capability of a biofilm that can mediate the conversion of serine and haloindoles to halotryptophans.


ChemBioChem | 2010

An Expeditious Route to Fluorinated Rapamycin Analogues by Utilising Mutasynthesis

Rebecca J. M. Goss; Simon Lanceron; Abhijeet Deb Roy; Simon Sprague; Mohammed Nur-E-Alam; David L. Hughes; Barrie Wilkinson; Steven James Moss

Rapamycin is a drug with several important clinical uses. Its complex structure means that total synthesis of this natural product and its analogues is demanding and lengthy. A more expeditious approach is to utilise biosynthesis to enable the generation of otherwise synthetically intractable analogues. In order to achieve this, rules governing biosynthetic precursor substrate preference must be established. Through determining these rules and synthesising and administering suitable substrate precursors, we demonstrate the first generation of fluorinated rapamycin analogues. Here we report the generation of six new fluororapamycins.

Collaboration


Dive into the Rebecca J. M. Goss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma J. Rackham

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.J.H. Simmons

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Michael Winn

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Tim W. Overton

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Amany E. Ragab

University of East Anglia

View shared research outputs
Researchain Logo
Decentralizing Knowledge