Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tímea Bencsik is active.

Publication


Featured researches published by Tímea Bencsik.


International Journal of Biological Macromolecules | 2012

Flavonoid aglycones can compete with Ochratoxin A for human serum albumin: A new possible mode of action

Miklós Poór; Sándor Kunsági-Máté; Tímea Bencsik; Jozsef Petrik; Sanda Vladimir-Knežević; Tamás Kőszegi

The mycotoxin Ochratoxin A (OTA) appears worldwide in cereals, plant products, different foods and drinks. Ochratoxin A binds to plasma albumin with a very high affinity. However, it is well known that natural flavonoids can also bind to human serum albumin (HSA) at the same binding site as OTA does (site I, subdomain IIA). A few experimental literature data suggest that reducing the bound fraction of OTA speeds up its elimination rate with a potential decrease in its toxicity. In our experimental model competitive binding properties of flavonoid aglycones were examined with a fluorescence polarization based approach. Our data show that some of the flavonoids are able to remove the toxin from HSA. We conclude that among the 13 studied flavonoid aglycones galangin and quercetin were the most effective competitors for OTA.


Biomedicine & Pharmacotherapy | 2017

Interaction of quercetin and its metabolites with warfarin: Displacement of warfarin from serum albumin and inhibition of CYP2C9 enzyme

Miklós Poór; Gabriella Boda; Paul W. Needs; Paul A. Kroon; Beáta Lemli; Tímea Bencsik

Flavonoids are ubiquitous molecules in nature with manifold pharmacological effects. Flavonoids interact with several proteins, and thus potentially interfere with the pharmacokinetics of various drugs. Though much is known about the protein binding characteristics of flavonoid aglycones, the behaviour of their metabolites, which are extensively formed in the human body has received little attention. In this study, the interactions of the flavonoid aglycone quercetin and its main metabolites with the albumin binding of the oral anticoagulant warfarin were investigated by fluorescence spectroscopy and ultrafiltration. Furthermore, the inhibitory effects of these flavonoids on CYP2C9 enzyme were tested because the metabolic elimination of warfarin is catalysed principally by this enzyme. Herein, we demonstrate that each tested flavonoid metabolite can bind to human serum albumin (HSA) with high affinity, some with similar or even higher affinity than quercetin itself. Quercetin metabolites are able to strongly displace warfarin from HSA suggesting that high quercetin doses can strongly interfere with warfarin therapy. On the other hand, tested flavonoids showed no or weaker inhibition of CYP2C9 compared to warfarin, making it very unlikely that quercetin or its metabolites can significantly inhibit the CYP2C9-mediated inactivation of warfarin.


Asian Pacific Journal of Tropical Medicine | 2016

Phytochemical overview and medicinal importance of Coffea species from the past until now

Éva Brigitta Patay; Tímea Bencsik; Nóra Papp

Coffea (coffee) species are grown in almost all countries along the Equator. Many members of the genus have a large production history and an important role both in the global market and researches. Seeds (Coffeae semen) are successfully used in food, cosmetic, and pharmaceutical industries due to its caffeine and high polyphenol content. Nowadays, the three best-known coffee species are Arabic (Coffea arabica L.), Robusta (Coffea robusta L. Linden), and Liberian coffees (Coffea liberica Hiern.). Even though, many records are available on coffee in scientific literature, wild coffee species like Bengal coffee (Coffea benghalensis Roxb. Ex Schult.) could offer many new opportunities and challenges for phytochemical and medical studies. In this comprehensive summary, we focused on the ethnomedicinal, phytochemical, and medical significance of coffee species up to the present.


Genetic Resources and Crop Evolution | 2017

Ethnomycological use of Fomes fomentarius (L.) Fr. and Piptoporus betulinus (Bull.) P. Karst. in Transylvania, Romania

Nóra Papp; Kinga Rudolf; Tímea Bencsik; Dóra Czégényi

In Transylvania, part of Romania, fungi are traditionally used in the human medicine, handicraft, and several customs for a long time past. This study aimed at systematic collecting of ethnomycological and ethnomedicinal data of Fomes fomentarius (L.) Fr. and Piptoporus betulinus (Bull.) P. Karst. in Corund in south-eastern Transylvania. In addition, we aimed to compare our data with earlier ethnomycological and pharmacological records of the region and other countries. The fieldwork was carried out in Corund in 2012–2013. The visited “toplász” people who work with tinders were asked with semi-structured interviews to list the harvesting method and time, storage and preparations, as well as the ethnomycological and ethnomedicinal use of the fruit body of tinder fungus and birch polypore. Literature data were collected from the major scientific databases. The ethnomycological use of tinder fungus and birch polypore starts with the traditional steps of collection, storage, and trimming and involves the use for ethnomedicinal purposes and preparation of unique handmade products. These preparations are still available on national and international markets nowadays. The ethnobotanical use of these fungi resulted in a special local occupation in Corund, which is a unique activity in the world. Unfortunately, it seems to be a disappearing tradition nowadays because of the lack of transmission. Therefore, these living data should be urgently documented and preserved for the maintenance of this valuable local tradition and knowledge of Székelys.


Pharmacology | 2016

Serotonin or the Mucosa Do Not Mediate the Motor Effect of Allyl Isothiocyanate in the Guinea-Pig Small Intestine

Zsolt Sándor; Tímea Bencsik; Andras Dekany; Loránd Barthó

Background: Serotonin (5-hydroxytryptamine, 5-HT), originating from the enterochromaffin cells has been reported to mediate the contractile effect of the sensory stimulant and TRPA1 activator allyl isothiocyanate (AITC) in the guinea-pig small intestine [Nozawa et al: Proc Natl Acad Sci U S A 2009;106:3408-3413]. Summary: In the present experiments, the nerve-mediated contraction of this preparation due to AITC was not inhibited by a combination of methysergide (broad-spectrum 5-HT antagonist; 0.3 µmol/l), Y 25130 (azasetron, 5-HT3 receptor antagonist; 1 µmol/l) and SB 204070 (5-HT4 receptor antagonist; 2 µmol/l) or by 5-HT receptor desensitization, that is, pretreatments that practically abolished contractions of similar size in response to exogenous 5-HT, without causing nonspecific effects. AITC also contracted longitudinal muscle-myenteric plexus preparations, an effect also fully resistant to the combination of 5-HT receptor antagonists. The pharmacology of AITC in strip preparations matched that in the whole ileum. Key Messages: It is concluded that neither endogenous 5-HT nor the gut mucosa contributes to the excitatory effect of AITC in the guinea-pig small intestine. The combination of 5-HT antagonists elaborated is suitable for studying the possible involvement of 5-HT in motor responses of the guinea-pig intestine.


Acta Biologica Hungarica | 2016

Examination of secondary metabolites and antioxidant capacity of Anthyllis vulneraria, Fuchsia sp., Galium mollugo and Veronica beccabunga

Rita Csepregi; Tímea Bencsik; Nóra Papp

Anthyllis vulneraria L., Fuchsia sp., Galium mollugo L., and Veronica beccabunga L. were selected to analyse the phenolic content and the antioxidant activity by ferric ion reducing antioxidant power (FRAP) and trolox equivalent antioxidant capacity (TEAC) assays. The highest polyphenol, tannin, and flavonoid contents were measured in Fuchsia species (7.40 ± 0.8, 5.62 ± 0.7 and 0.72 ± 0.1 g/100 g dry weight), while the lowest values were detected in Anthyllis vulneraria (0.68 ± 0.02, 0.17 ± 0.03 and 0.45 ± 0.01 g/100 g dry weight) and Galium mollugo (1.77 ± 0.05, 0.49 ± 0.04 and 0.16 ± 0.06 g/100 g dry weight). The leaf extract of Fuchsia sp. had the highest, while the herb of A. vulneraria had the lowest antioxidant effect measured by both methods, which is probably related to total polyphenol, tannin, and flavonoid contents.


Toxins | 2018

Removal of Zearalenone and Zearalenols from Aqueous Solutions Using Insoluble Beta-Cyclodextrin Bead Polymer

Miklós Poór; Zelma Faisal; Afshin Zand; Tímea Bencsik; Beáta Lemli; Sándor Kunsági-Máté; Lajos Szente

Zearalenone (ZEN) is a Fusarium-derived mycotoxin, exerting xenoestrogenic effects in animals and humans. ZEN and its derivatives commonly occur in cereals and cereal-based products. During the biotransformation of ZEN, its reduced metabolites, α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL), are formed; α-ZEL is even more toxic than the parent compound ZEN. Since previous studies demonstrated that ZEN and ZELs form stable complexes with β-cyclodextrins, it is reasonable to hypothesize that cyclodextrin polymers may be suitable for mycotoxin removal from aqueous solutions. In this study, the extraction of ZEN and ZELs from water, buffers, and corn beer was investigated, employing insoluble β-cyclodextrin bead polymer (BBP) as a mycotoxin-binder. Our results demonstrate that even relatively small amounts of BBP can strongly decrease the mycotoxin content of aqueous solutions (including beer). After the first application of BBP for mycotoxin binding, BBP could be completely reactivated through the elimination of ZEN from the cyclodextrin cavities by washing with a 50 v/v% ethanol-water mixture. Therefore, our study suggests that insoluble cyclodextrin polymers may be suitable tools in the future to deplete mycotoxins from contaminated drinks.


Frontiers in Pharmacology | 2018

Evidence Supports Tradition: The in Vitro Effects of Roman Chamomile on Smooth Muscles

Zsolt Sándor; Javad Mottaghipisheh; Katalin Veres; Judit Hohmann; Tímea Bencsik; Attila Horváth; Dezső Kelemen; Róbert Papp; Loránd Barthó; Dezső Csupor

The dried flowers of Chamaemelum nobile (L.) All. have been used in traditional medicine for different conditions related to the spasm of the gastrointestinal system. However, there have been no experimental studies to support the smooth muscle relaxant effect of this plant. The aim of our research was to assess the effects of the hydroethanolic extract of Roman chamomile, its fractions, four of its flavonoids (apigenin, luteolin, hispidulin, and eupafolin), and its essential oil on smooth muscles. The phytochemical compositions of the extract and its fractions were characterized and quantified by HPLC-DAD, the essential oil was characterized by GC and GC-MS. Neuronally mediated and smooth muscle effects were tested in isolated organ bath experiments on guinea pig, rat, and human smooth muscle preparations. The crude herbal extract induced an immediate, moderate, and transient contraction of guinea pig ileum via the activation of cholinergic neurons of the gut wall. Purinoceptor and serotonin receptor antagonists did not influence this effect. The more sustained relaxant effect of the extract, measured after pre-contraction of the preparations, was remarkable and was not affected by an adrenergic beta receptor antagonist. The smooth muscle-relaxant activity was found to be associated with the flavonoid content of the fractions. The essential oil showed only the relaxant effect, but no contracting activity. The smooth muscle-relaxant effect was also detected on rat gastrointestinal tissues, as well as on strip preparations of human small intestine. These results suggest that Roman chamomile extract has a direct and prolonged smooth muscle-relaxant effect on guinea pig ileum which is related to its flavonoid content. In some preparations, a transient stimulation of enteric cholinergic motoneurons was also detected. The essential oil also had a remarkable smooth muscle relaxant effect in this setting. Similar relaxant effects were also detected on other visceral preparations, including human jejunum. This is the first report on the activity of Roman chamomile on smooth muscles that may reassure the rationale of the traditional use of this plant in spasmodic gastrointestinal disorders.


Biomedicine & Pharmacotherapy | 2018

Interactions of casticin, ipriflavone, and resveratrol with serum albumin and their inhibitory effects on CYP2C9 and CYP3A4 enzymes

Violetta Mohos; Tímea Bencsik; Gabriella Boda; Eszter Fliszár-Nyúl; Beáta Lemli; Sándor Kunsági-Máté; Miklós Poór

Polyphenols are abundant molecules in the plant kingdom. They interact with several proteins in the body resulting in their complex biological effects. Previous studies demonstrated that polyphenols can interfere significantly with the pharmacokinetics of drugs by acting on their biotransformation, albumin-binding, and/or carrier-mediated transport. Casticin (CAS), ipriflavone (IPR), and resveratrol (RES) are well-known polyphenols often added to dietary supplements in high doses. In this study, we investigated the albumin-binding of these polyphenols by fluorescence spectroscopy, and their ability to displace the Sudlows Site I ligand warfarin and the Site II ligand naproxen by ultrafiltration. Furthermore, the effects of CAS, IPR, and RES on CYP2C9 and CYP3A4 enzymes were examined, employing diclofenac and testosterone as substrates, respectively. Our main observations are the following: (1) Polyphenols formed stable complexes with albumin (K = 104-105 L/mol); (2) CAS and RES slightly displaced naproxen from human albumin, while albumin-binding of warfarin was not affected; (3) CAS and RES significantly inhibited CYP2C9, with CAS being as potent as the positive control warfarin; (4) each polyphenol significantly inhibited CYP3A4, with RES being stronger and CAS slightly weaker than the known inhibitor naringenin. Our results suggest that high intake of CAS and RES may interfere with the albumin-binding of Site II ligands as well as the metabolism of drugs by CYP2C9 and/or CYP3A4 enzymes, while large doses of IPR may affect the CYP3A4-catalyzed biotransformation of some drugs.


Acta Biologica Hungarica | 2018

Effects of the venom of the brown bullhead catfish (Ameiurus nebulosus) on isolated smooth muscles

Loránd Barthó; Zsolt Sándor; Tímea Bencsik

Aqueous extract of the spines of the brown bullhead catfish (Ameiurus nebulosus Lesueur, 1819) caused contraction of the guinea-pig small intestine in vitro, a widely-used preparation in pharmacology. The action is dependent on extracellular Ca2+, and probably takes place on the smooth muscle cells. Mouse gastrointestinal preparations were also contracted by the extract. Stings by the spines of this fish species causes a painful sensation in man. We tested the effect of an extract of spines in isolated organ experiments on innervated smooth muscle preparations. In the guinea-pig ileum, the response to the extract was abolished by the Ca2+-channel blocker nifedipine, but only slightly reduced by atropine (a muscarine receptor antagonist) or tetrodotoxin (TTX; a blocker axonal conduction) or antagonists for P2X purinoceptors. Blocking of serotonin or histamine H1 receptors, tachykinin NK1 receptors, functional impairment of capsaicin-sensitive sensory nerve endings or inhibition of cyclo-oxygenases failed to influence the contractile effect of the extract. No inhibitory action of the extract was detected on the ileum subject to electrical motor nerve stimulation.

Collaboration


Dive into the Tímea Bencsik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge