Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tímea Kiss is active.

Publication


Featured researches published by Tímea Kiss.


European Journal of Pharmaceutical Sciences | 2010

Evaluation of the cytotoxicity of β-cyclodextrin derivatives: evidence for the role of cholesterol extraction.

Tímea Kiss; Ferenc Fenyvesi; Ildikó Bácskay; Judit Váradi; Éva Fenyvesi; R. Iványi; Lajos Szente; Arpad Tosaki; Miklós Vecsernyés

Several beta-cyclodextrin (beta-CD) derivatives have been synthesized recently to improve the physicochemical properties and inclusion capacities of the parent molecule, however, there is limited information available about their cytotoxic effects. In this study we investigated the cytotoxic and hemolytic properties of various beta-CDs in correlation with their cholesterol-solubilizing capacities to expose the mechanism of toxicity. MTT cell viability test, performed on Caco-2 cells showed significant differences between the cytotoxicity of beta-CD derivatives. Cell toxicity of methylated-beta-CDs was the highest, while ionic derivatives proved to be less toxic than methylated ones. Most of the second generation beta-CD derivatives, having both ionic and methyl substituents showed less cytotoxicity than the parent compounds both on Caco-2 cells and human erythrocytes. Inclusion of cholesterol into the ring of randomly methylated-beta-CD and heptakis(2,6-di-O-methyl)-beta-CD abolished the cell toxicity indicating the role of cholesterol extraction in cytotoxicity. These data demonstrate the correlation between the cytotoxic effect, hemolytic activity and the cholesterol complexation attributes of beta-CD derivatives and we propose that cholesterol-solubilizing properties can be a predictive factor for beta-CD cell toxicity.


European Journal of Pharmaceutical Sciences | 2012

Evaluation of cytotoxicity of surfactants used in self-micro emulsifying drug delivery systems and their effects on paracellular transport in Caco-2 cell monolayer

Zoltán Ujhelyi; Ferenc Fenyvesi; Judit Váradi; Pálma Fehér; Tímea Kiss; Szilvia Veszelka; Mária A. Deli; Miklós Vecsernyés; Ildikó Bácskay

The objective of this study was to examine the cellular effects of the members of two non-ionic amphiphilic tenside groups and their mixtures on human Caco-2 cell monolayers as dependent upon their chemical structures and physicochemical properties. The first group of polyethylene glycol esters is represented by Polysorbates and Labrasol alone and in blends, while the members of the second group. Capryol 90, Capryol PGMC, Lauroglycol 90 and Lauroglycol FCC were used as propylene glycol esters. They are increasingly used in SMEDDS as recent tensides or co-tensides to increase hydrophobic bioavailability of a drug. Critical micelle concentration was measured by determination of surface tension. CMC refers to the ability of solubilization of surfactants. Cytotoxicity tests were performed on Caco-2 cell monolayers by MTT and LDH methods. Paracellular permeability as a marker of the integrity of cell monolayers, was examined with Lucifer yellow assays combined with TransEpithelial Electrical Resistance (TEER) measurements. The effect of these surfactants on tight junctions as evidence for paracellular pathway was also characterized. The results of cytotoxicity assays were in agreement, and showed significant differences among the cytotoxic properties of surfactants in a concentration-dependent manner. Polysorbates 20, 60, 80 are the most toxic compounds. In the case of Labrasol, the degree of esterification and lack of sorbit component decreased cytotoxicity. If the hydrophyl head was changed from polyethylene glycol to propylene glycol the main determined factor of cytotoxicity was the monoester content and the length of carbon chain. In our CMC experiments, we found that only Labrasol showed expressed cytotoxicity above the CMC. It refers to good ability of micelle solubilization of Labrasol. In our paracellular transport experiments each of polyethylene glycol surfactants (Polysorbates and Labrasol) altered TEER values, but propylene glycol esters did not modify the monolayer integrity. Polyethylene glycol esters alone and in blends (0.05% Labrasol--0.001% Polysorbates 20, 60, 80) were able to increase Lucifer yellow permeability significantly below the IC₅₀ concentration. On the other hand Labrasol and Polysorbates 20 have expressed effect on tight junctions of Caco-2 monolayer. It could be concluded that polyethylene glycol ester-type tensides were able to enhance the paracellular permeability by the redistribution of junctional proteins. Our results might ensure useful data for selection of suitable tensides, co-tensides and tenside mixtures for SMEDDS formulations.


European Journal of Pharmaceutical Sciences | 2008

P-glycoprotein inhibition by membrane cholesterol modulation

Ferenc Fenyvesi; Éva Fenyvesi; Lajos Szente; Katalin Goda; Zsolt Bacsó; Ildikó Bácskay; Judit Váradi; Tímea Kiss; Éva Molnár; Tamás Janáky; Gábor Szabó; Miklós Vecsernyés

P-glycoprotein (Pgp) is a transmembrane protein that actively exports lipophilic chemotherapeutics from the cells causing multidrug resistance. Pgp molecules are partially localized in TX-100-resistant rafts, and the activity of the transporter is highly sensitive to the presence of cholesterol. To better understand these relationships, the influence of membrane cholesterol content on Pgp function, as measured via calcein accumulation, was studied in correlation with changes elicited in membrane structure. Membrane cholesterol was modulated by heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DIMEB) and the cholesterol inclusion complex of DIMEB (Chol-DIMEB). Changes in membrane cholesterol level were reflected by alterations in the overall lipid packing as measured by Merocyanine 540 (MC540) staining and were also accompanied by changes in the raft association of the pump. DIMEB and Chol-DIMEB treatments have also lead to increased permeability of the cell membrane in both directions, raising the possibility that the effects on pumping efficiency reflect leakage of ATP also from the non-permeabilized cells. However, the treatments did not influence the intracellular ATP levels of the non-permeabilized cells. Our data suggest that Pgp inhibition by cyclodextrin treatments arises through modulation of its membrane microenvironment, rather than as a result of concomitant cytotoxicity.


Tumor Biology | 2012

The role of CCND1 alterations during the progression of cutaneous malignant melanoma

Laura Vízkeleti; Szilvia Ecsedi; Zsuzsa Rákosy; Adrienn Orosz; Viktória Lázár; Gabriella Emri; Viktória Koroknai; Tímea Kiss; Róza Ádány; Margit Balázs

It is well demonstrated that CCND1 amplification is a frequent event in the acral subtype of cutaneous malignant melanoma; however, its role in the other subtypes of the disease is still controversial. The objectives of this study were to evaluate genetic and expression alterations of CCND1 with a focus on primary cutaneous melanomas, to define BRAF and NRAS mutation status, and correlate the data with clinical–pathological parameters. CCND1 amplification was associated with ulceration and the localization of the metastasis. After correction for the mutation state of BRAF and NRAS genes, CCND1 amplification in samples without such mutations was associated with ulceration and sun exposure. The cyclin D1 (CCND1) mRNA level decreased in lesions with multiple metastases and was correlated with both the mRNA levels and mutation state of BRAF and NRAS genes. Primary melanomas with BRAFV600 or NRASQ61 mutations exhibited lower CCND1 mRNA level. CCND1 protein expression was associated with Breslow thickness, metastasis formation, and shorter survival time. These observations suggest that CCND1 alterations are linked to melanoma progression and are modified by BRAF and NRAS mutations. Our data show that CCND1 amplification could have a prognostic relevance in cutaneous melanoma and highlight that altered CCND1 gene expression may influence the metastatic progression, survival, and the localization of metastases.


Journal of Pharmaceutical Sciences | 2011

Randomly methylated β‐cyclodextrin derivatives enhance taxol permeability through human intestinal epithelial Caco‐2 cell monolayer

Ferenc Fenyvesi; Tímea Kiss; Éva Fenyvesi; Lajos Szente; Szilvia Veszelka; Mária A. Deli; Judit Váradi; Pálma Fehér; Zoltán Ujhelyi; Arpad Tosaki; Miklós Vecsernyés; Ildikó Bácskay

Intestinal absorption and bioavailability of taxol are limited by its low solubility and P-glycoprotein (Pgp) activity. Methylated β-cyclodextrins (CDs) effectively form complexes with paclitaxel but randomly methylated β-cyclodextrin (RAMEB) is cytotoxic in high concentrations. Second-generation derivatives containing monoamino (MaRAMEB) and succinylated (SuRAMEB) ionic substituents with similar inclusion capacity but less toxicity could be promising alternatives of RAMEB. Our aim was to examine and compare the efficacy of MaRAMEB and SuRAMEB with the parental RAMEB on taxol bidirectional permeability using the Caco-2 model. Taxol permeability was not changed by 30-min pretreatment with CDs. In co-treatment with β-cyclodextrins, the apical to basolateral taxol flux was 4 to 6 times greater than in untreated monolayers and it was also higher than in cells treated with Pgp inhibitor cyclosporin A. No decrease in basolateral to apical taxol flux was observed in pretreatment or co-treatment with CDs, suggesting no Pgp inhibition. All three CDs showed similar effects on taxol permeability but RAMEB altered tight junction protein distribution and significantly decreased transepithelial electrical resistance. None of the CDs modified paracellular permeability to mannitol and polyethylene glycol 4000. In conclusion, second-generation derivatives of methyl-β-cyclodextrin, especially MaRAMEB, enhanced taxol permeability across Caco-2 cells with less toxicity and similar effectiveness as RAMEB.


Journal of Pharmaceutical and Biomedical Analysis | 2013

Investigation of transport of genistein, daidzein and their inclusion complexes prepared with different cyclodextrins on Caco-2 cell line.

Ágnes Emma Daruházi; Tímea Kiss; Miklós Vecsernyés; Lajos Szente; Éva Lemberkovics

Isoflavonoids are widespread constituents in medical plants especially in legumes (Fabaceae), but occur in other different plant families as well (Rosaceae, Iridaceae, Amaranthaceae). Their antioxidant, estrogen-like, anti-inflammatory and analgesic effects make them promising compounds in therapy of important disorders especially in estrogen related diseases. Poor solubility in aqueous system of genistein and daidzein needs a solubility enhancement for pharmaceutical use. These compounds are suitable guest molecules for inclusion complex formation with cyclodextrins (CDs) considering matching their size and polarity. The molecular encapsulation with beta-cyclodextrin (β-CD), gamma-cyclodextrin (γ-CD), hydroxypropyl-beta-cyclodextrin (HP-β-CD) and random methyl-beta cyclodextrin (RAMEB-CD) results in a solid, molecularly dispersed form and in a significantly improved aqueous solubility of genistein and daidzein. Determining enhancement in solubility and bioavailability we investigated the transport of these inclusion complexes across Caco-2 cell line comparing that of the pure compounds and found significant improving effect of the different CD derivatives on membrane permeation of the two isoflavone aglycons.


Neuroendocrinology | 2009

Dopamine-Regulated Adrenocorticotropic Hormone Secretion in Lactating Rats: Functional Plasticity of Melanotropes

Márk Oláh; Pálma Fehér; Zsófia Ihm; Ildikó Bácskay; Tímea Kiss; Marc E. Freeman; György Nagy; Miklós Vecsernyés

Pro-opiomelanocortin (POMC) is processed to adrenocorticotropic hormone (ACTH) and β-lipotropin in corticotropes of the anterior lobe, and to α-melanocyte-stimulating hormone (α-MSH) and β-endorphin in melanotropes of the intermediate lobe (IL) of the pituitary gland. While ACTH secretion is predominantly under the stimulatory influence of the hypothalamic factors, hormone secretion of the IL is tonically inhibited by neuroendocrine dopamine (NEDA) neurons. Lobe-specific POMC processing is not absolute. For example, D2 type DA receptor (D2R)-deficient mice have elevated plasma ACTH levels, although it is known that corticotropes do not express D2R(s). Moreover, observations that suckling does not influence α-MSH release, while it induces an increase in plasma ACTH is unexplained. The aim of the present study was to investigate the involvement of the NEDA system in the regulation of ACTH secretion and the participation of the IL in ACTH production in lactating rats. Untreated and estradiol (E2)-substituted ovariectomized (OVX) females were also studied. The concentration of ACTH in the IL was higher in lactating rats than in OVX rats, while the opposite change in α-MSH level of the IL was observed. DA levels in the IL and the neural lobe were lower in lactating rats than in OVX rats. Suckling-induced ACTH response was eliminated by pretreatment with the DA receptor agonist, bromocriptine (BRC). Inhibition of DA biosynthesis by α-methyl-p-tyrosine (αMpT) and blockade of D2R by domperidone (DOM) elevated plasma ACTH levels, but did not influence plasma α-MSH levels in lactating rats. The same drugs had opposite effects in OVX and OVX + E2 animals. In lactating mothers, BRC was able to block ACTH responses induced by both αMpT and DOM. Surgical denervation of the IL elevated basal plasma levels of ACTH. Taken together, these data indicate that melanotropes synthesize ACTH during lactation and its release from these cells is regulated by NEDA neurons.


Melanoma Research | 2017

Altered integrin expression patterns shown by microarray in human cutaneous melanoma

Laura Vízkeleti; Tímea Kiss; Viktória Koroknai; Szilvia Ecsedi; Orsolya Papp; István Szász; Róza Ádány; Margit Balázs

A large variety of molecular pathways in melanoma progression suggests that no individual molecular alteration is crucial in itself. Our aim was to define the molecular alterations underlying metastasis formation. Gene expression profiling was performed using microarray and qRT-PCR to define alterations between matched primary and metastatic melanoma cell lines. These data were integrated with publicly available unmatched tissue data. The invasiveness of cell lines was determined by Matrigel invasion assays and invasive clones from primary melanoma-derived cell lines were also selected. Two metastatic cell line models were created: the regional lymph node WM983A–WM983AINV–WM983B and the distant lung WM793B–WM793BINV–1205Lu metastatic models. The majority of metastasis genes were downregulated and enriched in adhesion and ITGA6-B4 pathways. Upregulation of immune pathways was characteristic of distant metastases, whereas increased Rap1 signaling was specific for regional (sub)cutaneous metastases. qRT-PCR analysis of selected integrins (A2, A3, A4, A9, B5, B8, A6, B1, and B3) highlighted the possible importance of ITGA3/4 and B8 in the metastatic process, distinguishing regional and distant metastases. We identified functionally relevant gene clusters that influenced metastasis formation. Our data provide further evidence that integrin expression patterns may be important in distant metastasis formation.


Melanoma Research | 2016

Genomic profiling of invasive melanoma cell lines by array comparative genomic hybridization

Viktória Koroknai; Szilvia Ecsedi; Laura Vízkeleti; Tímea Kiss; István Szász; Andrea Lukács; Orsolya Papp; Róza Ádány; Margit Balázs

Malignant melanoma is one of the most aggressive human cancers. Invasion of cells is the first step in metastasis, resulting in cell migration through tissue compartments. We aimed to evaluate genomic alterations specifically associated with the invasive characteristics of melanoma cells. Matrigel invasion assays were used to determine the invasive properties of cell lines that originated from primary melanomas. Array comparative genomic hybridization analyses were carried out to define the chromosome copy number alterations (CNAs). Several recurrent CNAs were identified by array comparative genomic hybridization that affected melanoma-related genes. Invasive primary cell lines showed high frequencies of CNAs, including the loss of 7q and gain of 12q chromosomal regions targeting PTPN12, ADAM22, FZD1, TFPI2, GNG11, COL1A2, SMURF1, VGF, RELN and GLIPR1 genes. Gain of the GDNF (5p13.1), GPAA1, PLEC and SHARPIN (8q24.3) genes was significantly more frequent in invasive cell lines compared with the noninvasive ones. Importantly, copy number gains of these genes were also found in cell lines that originated from metastases, suggesting their role in melanoma metastasis formation. The present study describes genomic differences between invasive and noninvasive melanoma cell lines that may contribute toward the aggressive phenotype of human melanoma cells.


Neuroendocrinology | 2009

Contents Vol. 90, 2009

Alan J. Stewart; Arieh A. Katz; Robert P. Millar; Kevin Morgan; Csilla Becskei; Thomas A. Lutz; Thomas Riediger; Ursula Ploeckinger; Guenter Kloeppel; Bertram Wiedenmann; Ruediger Lohmann; Yong-Ho Lee; Julie M. Martin; Rhonda L. Maple; William G. Tharp; Richard E. Pratley; Márk Oláh; Pálma Fehér; Zsófia Ihm; Ildikó Bácskay; Tímea Kiss; Marc E. Freeman; György Nagy; Miklós Vecsernyés; Rie Ogata; Toshiya Matsuzaki; Takeshi Iwasa; Machiko Kiyokawa; Naoko Tanaka; Akira Kuwahara

93 Abstracts of the 6th Annual ENETS Conference Granada, Spain, March 5–7, 2009 147 ENETS Newsletter

Collaboration


Dive into the Tímea Kiss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge