Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timmy Siauw is active.

Publication


Featured researches published by Timmy Siauw.


Medical Physics | 2011

IPIP: A new approach to inverse planning for HDR brachytherapy by directly optimizing dosimetric indices

Timmy Siauw; Adam Cunha; Alper Atamtürk; I-Chow Hsu; Jean Pouliot; Ken Goldberg

PURPOSE Many planning methods for high dose rate (HDR) brachytherapy require an iterative approach. A set of computational parameters are hypothesized that will give a dose plan that meets dosimetric criteria. A dose plan is computed using these parameters, and if any dosimetric criteria are not met, the process is iterated until a suitable dose plan is found. In this way, the dose distribution is controlled by abstract parameters. The purpose of this study is to develop a new approach for HDR brachytherapy by directly optimizing the dose distribution based on dosimetric criteria. METHODS The authors developed inverse planning by integer program (IPIP), an optimization model for computing HDR brachytherapy dose plans and a fast heuristic for it. They used their heuristic to compute dose plans for 20 anonymized prostate cancer image data sets from patients previously treated at their clinic database. Dosimetry was evaluated and compared to dosimetric criteria. RESULTS Dose plans computed from IPIP satisfied all given dosimetric criteria for the target and healthy tissue after a single iteration. The average target coverage was 95%. The average computation time for IPIP was 30.1 s on an Intel(R) Core 2 Duo CPU 1.67 GHz processor with 3 Gib RAM. CONCLUSIONS IPIP is an HDR brachytherapy planning system that directly incorporates dosimetric criteria. The authors have demonstrated that IPIP has clinically acceptable performance for the prostate cases and dosimetric criteria used in this study, in both dosimetry and runtime. Further study is required to determine if IPIP performs well for a more general group of patients and dosimetric criteria, including other cancer sites such as GYN.


Journal of Applied Clinical Medical Physics | 2015

Evaluation of PC-ISO for Customized, 3D Printed, Gynecologic 192-Ir HDR Brachytherapy Applicators

J Cunha; K Mellis; Rajni Sethi; Timmy Siauw; Atchar Sudhyadhom; Animesh Garg; Ken Goldberg; I-Chow Hsu; Jean Pouliot

The purpose of this study was to evaluate the radiation attenuation properties of PC‐ISO, a commercially available, biocompatible, sterilizable 3D printing material, and its suitability for customized, single‐use gynecologic (GYN) brachytherapy applicators that have the potential for accurate guiding of seeds through linear and curved internal channels. A custom radiochromic film dosimetry apparatus was 3D‐printed in PC‐ISO with a single catheter channel and a slit to hold a film segment. The apparatus was designed specifically to test geometry pertinent for use of this material in a clinical setting. A brachytherapy dose plan was computed to deliver a cylindrical dose distribution to the film. The dose plan used an 192Ir source and was normalized to 1500 cGy at 1 cm from the channel. The material was evaluated by comparing the film exposure to an identical test done in water. The Hounsfield unit (HU) distributions were computed from a CT scan of the apparatus and compared to the HU distribution of water and the HU distribution of a commercial GYN cylinder applicator. The dose depth curve of PC‐ISO as measured by the radiochromic film was within 1% of water between 1 cm and 6 cm from the channel. The mean HU was ‐10 for PC‐ISO and ‐1 for water. As expected, the honeycombed structure of the PC‐ISO 3D printing process created a moderate spread of HU values, but the mean was comparable to water. PC‐ISO is sufficiently water‐equivalent to be compatible with our HDR brachytherapy planning system and clinical workflow and, therefore, it is suitable for creating custom GYN brachytherapy applicators. Our current clinical practice includes the use of custom GYN applicators made of commercially available PC‐ISO when doing so can improve the patients treatment. PACS number: none


Medical Physics | 2012

NPIP: A skew line needle configuration optimization system for HDR brachytherapy

Timmy Siauw; Adam Cunha; Dmitry Berenson; Alper Atamtürk; I-Chow Hsu; Ken Goldberg; Jean Pouliot

PURPOSE In this study, the authors introduce skew line needle configurations for high dose rate (HDR) brachytherapy and needle planning by integer program (NPIP), a computational method for generating these configurations. NPIP generates needle configurations that are specific to the anatomy of the patient, avoid critical structures near the penile bulb and other healthy structures, and avoid needle collisions inside the body. METHODS NPIP consisted of three major components: a method for generating a set of candidate needles, a needle selection component that chose a candidate needle subset to be inserted, and a dose planner for verifying that the final needle configuration could meet dose objectives. NPIP was used to compute needle configurations for prostate cancer data sets from patients previously treated at our clinic. NPIP took two user-parameters: a number of candidate needles, and needle coverage radius, δ. The candidate needle set consisted of 5000 needles, and a range of δ values was used to compute different needle configurations for each patient. Dose plans were computed for each needle configuration. The number of needles generated and dosimetry were analyzed and compared to the physician implant. RESULTS NPIP computed at least one needle configuration for every patient that met dose objectives, avoided healthy structures and needle collisions, and used as many or fewer needles than standard practice. These needle configurations corresponded to a narrow range of δ values, which could be used as default values if this system is used in practice. The average end-to-end runtime for this implementation of NPIP was 286 s, but there was a wide variation from case to case. CONCLUSIONS The authors have shown that NPIP can automatically generate skew line needle configurations with the aforementioned properties, and that given the correct input parameters, NPIP can generate needle configurations which meet dose objectives and use as many or fewer needles than the current HDR brachytherapy workflow. Combined with robot assisted brachytherapy, this system has the potential to reduce side effects associated with treatment. A physical trial should be done to test the implant feasibility of NPIP needle configurations.PURPOSE In this study, the authors introduce skew line needle configurations for high dose rate (HDR) brachytherapy and needle planning by integer program (NPIP), a computational method for generating these configurations. NPIP generates needle configurations that are specific to the anatomy of the patient, avoid critical structures near the penile bulb and other healthy structures, and avoid needle collisions inside the body. METHODS NPIP consisted of three major components: a method for generating a set of candidate needles, a needle selection component that chose a candidate needle subset to be inserted, and a dose planner for verifying that the final needle configuration could meet dose objectives. NPIP was used to compute needle configurations for prostate cancer data sets from patients previously treated at our clinic. NPIP took two user-parameters: a number of candidate needles, and needle coverage radius, δ. The candidate needle set consisted of 5000 needles, and a range of δ values was used to compute different needle configurations for each patient. Dose plans were computed for each needle configuration. The number of needles generated and dosimetry were analyzed and compared to the physician implant. RESULTS NPIP computed at least one needle configuration for every patient that met dose objectives, avoided healthy structures and needle collisions, and used as many or fewer needles than standard practice. These needle configurations corresponded to a narrow range of δ values, which could be used as default values if this system is used in practice. The average end-to-end runtime for this implementation of NPIP was 286 s, but there was a wide variation from case to case. CONCLUSIONS The authors have shown that NPIP can automatically generate skew line needle configurations with the aforementioned properties, and that given the correct input parameters, NPIP can generate needle configurations which meet dose objectives and use as many or fewer needles than the current HDR brachytherapy workflow. Combined with robot assisted brachytherapy, this system has the potential to reduce side effects associated with treatment. A physical trial should be done to test the implant feasibility of NPIP needle configurations.


conference on automation science and engineering | 2013

An algorithm for computing customized 3D printed implants with curvature constrained channels for enhancing intracavitary brachytherapy radiation delivery

Animesh Garg; Sachin Patil; Timmy Siauw; J. Adam M. Cunha; I-Chow Hsu; Pieter Abbeel; Jean Pouliot; Ken Goldberg

Brachytherapy is a widely-used treatment modality for cancer in many sites in the body. In brachytherapy, small radioactive sources are positioned proximal to cancerous tumors. An ongoing challenge is to accurately place sources on a set of dwell positions to sufficiently irradiate the tumors while limiting radiation damage to healthy organs and tissues. In current practice, standardized applicators with internal channels are inserted into body cavities to guide the sources. These standardized implants are one-size-fits-all and are prone to shifting inside the body, resulting in suboptimal dosages. We propose a new approach that builds on recent results in 3D printing and steerable needle motion planning to create customized implants containing customized curvature-constrained internal channels that fit securely, minimize air gaps, and precisely guide radioactive sources through printed channels. When compared with standardized implants, customized implants also have the potential to provide better coverage: more potential source dwell positions proximal to tumors. We present an algorithm for computing curvature-constrained channels based on rapidly-expanding randomized trees (RRT). We consider a prototypical case of OB/GYN cervical and vaginal cancer with three treatment options: standardized ring implant (current practice), customized implant with linear channels, and customized implant with curved channels. Results with a two-parameter coverage metric suggest that customized implants with curved channels can offer significant improvement over current practice.


Journal of Contemporary Brachytherapy | 2016

Clinical applications of custom-made vaginal cylinders constructed using three-dimensional printing technology

Rajni Sethi; Adam Cunha; Katherine Mellis; Timmy Siauw; Chris J. Diederich; Jean Pouliot; I-Chow Hsu

Purpose Three-dimensional (3D) printing technology allows physicians to rapidly create customized devices for patients. We report our initial clinical experience using this technology to create custom applicators for vaginal brachytherapy. Material and methods Three brachytherapy patients with unique clinical needs were identified as likely to benefit from a customized vaginal applicator. Patient 1 underwent intracavitary vaginal cuff brachytherapy after hysterectomy and chemotherapy for stage IA papillary serous endometrial cancer using a custom printed 2.75 cm diameter segmented vaginal cylinder with a central channel. Patient 2 underwent interstitial brachytherapy for a vaginal cuff recurrence of endometrial cancer after prior hysterectomy, whole pelvis radiotherapy, and brachytherapy boost. We printed a 2 cm diameter vaginal cylinder with one central and six peripheral catheter channels to fit a narrow vaginal canal. Patient 3 underwent interstitial brachytherapy boost for stage IIIA vulvar cancer with vaginal extension. For more secure applicator fit within a wide vaginal canal, we printed a 3.5 cm diameter solid cylinder with one central tandem channel and ten peripheral catheter channels. The applicators were printed in a biocompatible, sterilizable thermoplastic. Results Patient 1 received 31.5 Gy to the surface in three fractions over two weeks. Patient 2 received 36 Gy to the CTV in six fractions over two implants one week apart, with interstitial hyperthermia once per implant. Patient 3 received 18 Gy in three fractions over one implant after 45 Gy external beam radiotherapy. Brachytherapy was tolerated well with no grade 3 or higher toxicity and no local recurrences. Conclusions We established a workflow to rapidly manufacture and implement customized vaginal applicators that can be sterilized and are made of biocompatible material, resulting in high-quality brachytherapy for patients whose anatomy is not ideally suited for standard, commercially available applicators.


IEEE Transactions on Automation Science and Engineering | 2013

Robot-Guided Open-Loop Insertion of Skew-Line Needle Arrangements for High Dose Rate Brachytherapy

Animesh Garg; Timmy Siauw; Dmitry Berenson; J. Adam M. Cunha; I-Chow Hsu; Jean Pouliot; Dan Stoianovici; Ken Goldberg

We present a study in human-centered automation that has potential to reduce patient side effects from high dose rate brachytherapy (HDR-BT). To efficiently deliver radiation to the prostate while minimizing trauma to sensitive structures such as the penile bulb, we modified the Acubot-RND 7-axis robot to guide insertion of diamond-tip needles into desired skew-line geometric arrangements. We extend and integrate two algorithms: Needle Planning with Integer Programming (NPIP) and Inverse Planning with Integer Programming (IPIP) to compute skew-line needle and dose plans. We performed three physical experiments with anatomically correct phantom models to study performance: two with the robot and one control experiment with an expert human physician (coauthor Hsu) without the robot. All were able to achieve needle arrangements that meet the RTOG-0321 clinical dose objectives with zero trauma to the penile bulb. We analyze systematic and random errors in needle placement; total RMS error for the robot system operating without feedback ranged from 2.6 to 4.3 mm, which is comparable to the RMS error of 2.7 mm obtained in an earlier study for PPI-BT treatment using a robot with 3D ultrasound feedback.


Medical Physics | 2014

WE-F-16A-01: Commissioning and Clinical Use of PC-ISO for Customized, 3D Printed, Gynecological Brachytherapy Applicators

J Cunha; R Sethi; K Mellis; Timmy Siauw; Atchar Sudhyadhom; I. Hsu; Jean Pouliot

PURPOSE (1) Evaluate the safety and radiation attenuation properties of PCISO, a bio-compatible, sterilizable 3D printing material by Stratasys, (2) establish a method for commissioning customized multi- and single-use 3D printed applicators, (3) report on use of customized vaginal cylinders used to treat a series of serous endometrial cancer patient. METHODS A custom film dosimetry apparatus was designed to hold a Gafchromic radio film segment between two blocks of PC-ISO and 3D-printed using a Fortus 400mc (StrataSys). A dose plan was computed using 13 dwell positions at 2.5 mm spacing and normalized to 1500 cGy at 1 cm. Film exposure was compared to control tests in only air and only water. The average Hounsfield Unit (HU) was computed and used to verify water equivalency. For the clinical use cases, the physician specifies the dimensions and geometry of a custom applicator from which a CAD model is designed and printed. RESULTS The doses measured from the PC-ISO Gafchromic film test were within 1% of the dose measured in only water between 1cm and 6cm from the channel. Doses increased 7-4% measured in only air. HU range was 11-43. The applicators were sterilized using the Sterrad system multiple times without damage. As of submission 3 unique cylinders have been designed, printed, and used in the clinic. A standardizable workflow for commissioning custom 3D printed applicators was codified and will be reported. CONCLUSIONS Quality assurance (QA) evaluation of the PC-ISO 3D-printing material showed that PC-ISO is a suitable material for a gynecological brachytherapy vaginal cylinder in a clinical setting. With the material commissioning completed, if the physician determines that a better treatment would Result, a customized design is fabricated with limited additional QA necessary. Although this study was specific to PC-ISO, the same setup can be used to evaluate other 3D-printing materials.


conference on automation science and engineering | 2012

Initial experiments toward automated robotic implantation of skew-line needle arrangements for HDR brachytherapy

Animesh Garg; Timmy Siauw; Dmitry Berenson; J. Adam M. Cunha; I-Chow Hsu; Jean Pouliot; Dan Stoianovici; Ken Goldberg

Automation seeks to improve the reliability and quality of processes. This study aims to automate high dose rate brachytherapy (HDR-BT), a radiation therapy that places radioactive sources at the site of the tumor using needles. Although HDR-BT has a high rate of clinical success in curing prostate cancer, it also has several side effects related to needle and dose trauma. A new planning algorithm from previous work optimizes needle arrangements using skew-lines (non-parallel, non-intersecting lines). This paper presents initial experiments towards an automated system for implanting skew-line needle arrangements computed from a planning system. We describe the interface, calibration and integration of the robotic hardware with the planning system, and present experiments using our robotic system to implant needles into anatomically-correct tissue phantoms. Results suggest that this system can achieve HDR-BT treatment objectives with reduced trauma to organs and low demands on operator skill, thus making the procedure more reliable and repeatable. In the future, we believe that robotic HDR-BT will improve overall treatment quality with reduced dependence on physician skill.


Brachytherapy | 2016

A method for restricting intracatheter dwell time variance in high-dose-rate brachytherapy plan optimization

Adam Cunha; Timmy Siauw; I-Chow Hsu; Jean Pouliot

PURPOSE To present the algorithm of a modification to the inverse planning simulated annealing (IPSA) optimization engine that allows for restriction of the intracatheter dwell time variance. METHODS AND MATERIALS IPSA was modified to allow user control of dwell time variance within each catheter through a single parameter, the dwell time deviation constraint (DTDC). The minimum DTDC value (DTDC = 0) does not impose any restriction on dwell time variance, and the maximum value (DTDC = 1) restricts all dwell times within each catheter to take on the same value. The final optimization penalty function value was evaluated as a function of DTDC. RESULTS The algorithm proposed fully preserves the inverse planning nature of the IPSA algorithm along with the penalty-based dose optimization workflow. Increasing DTDC creates less variance in dwell time between dwell positions in each catheter and may be used to induce a more smooth change in dwell time with dwell position in each catheter. Nonzero DTDC values always increased the optimization penalty function value. CONCLUSIONS The DTDC was developed as an extension to IPSA to allow restriction of the difference in dwell time between adjacent dwell positions. This results in less variation between neighboring dwell positions which can be clinically desirable. However, the impact of this restriction needs to be considered for its clinical relevance on a case-by-case basis because considerable degradation in dose-volume histogram metrics can result for large DTDC values.


conference on automation science and engineering | 2014

Exact reachability analysis for planning skew-line needle arrangements for automated brachytherapy

Animesh Garg; Timmy Siauw; Guang Yang; Sachin Patil; J. Adam M. Cunha; I-Chow Hsu; Jean Pouliot; Alper Atamtürk; Ken Goldberg

When planning skew-line needle arrangements for automated brachytherapy, one objective is to identify a set of candidate needles that enter from a specified entry region, avoid specified organs-at-risk and sufficiently cover the target (tumor) volume. Existing methods use uniform or random sampling to generate a set of candidate needles, which may not adequately cover the target volume. In this paper we present an exact reachability analysis that can be used to guide the selection of candidate needles and to identify which subset of the target volume may not be reachable. Assuming linear needles, convex polyhedral representations of entry zone, organs-at-risk and target volume, we give an exact polynomial time algorithm for checking existence and calculation of the non-reachable set in the target volume. We perform experiments using patient data from 18 brachytherapy cases and found that 11 cases had non-empty occluded volume inside the target ranging from 0.01% to 4.3% of target volume. We also report a sensitivity study showing the change in the occluded volume with dilation of the avoidance volume and entry zone.

Collaboration


Dive into the Timmy Siauw's collaboration.

Top Co-Authors

Avatar

Jean Pouliot

University of California

View shared research outputs
Top Co-Authors

Avatar

I-Chow Hsu

University of California

View shared research outputs
Top Co-Authors

Avatar

Ken Goldberg

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Animesh Garg

University of California

View shared research outputs
Top Co-Authors

Avatar

J Cunha

University of California

View shared research outputs
Top Co-Authors

Avatar

Adam Cunha

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajni Sethi

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge