Timo Kasper
Ruhr University Bochum
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Timo Kasper.
international cryptology conference | 2008
Thomas Eisenbarth; Timo Kasper; Amir Moradi; Christof Paar; Mahmoud Salmasizadeh; Mohammad Taghi Manzuri Shalmani
KeeLoq remote keyless entry systems are widely used for access control purposes such as garage openers or car door systems. We present the first successful differential power analysis attacks on numerous commercially available products employing KeeLoq code hopping. Our new techniques combine side-channel cryptanalysis with specific properties of the KeeLoq algorithm. They allow for efficiently revealing both the secret key of a remote transmitter and the manufacturer key stored in a receiver. As a result, a remote control can be cloned from only ten power traces, allowing for a practical key recovery in few minutes. After extracting the manufacturer key once, with similar techniques, we demonstrate how to recover the secret key of a remote control and replicate it from a distance, just by eavesdropping on at most two messages. This key-cloning without physical access to the device has serious real-world security implications, as the technically challenging part can be outsourced to specialists. Finally, we mount a denial of service attack on a KeeLoq access control system. All proposed attacks have been verified on several commercial KeeLoq products.
IEEE Transactions on Computers | 2008
Tim Güneysu; Timo Kasper; M. Novotny; Christof Paar; Andy Rupp
Cryptanalysis of ciphers usually involves massive computations. The security parameters of cryptographic algorithms are commonly chosen so that attacks are infeasible with available computing resources. Thus, in the absence of mathematical breakthroughs to a cryptanalytical problem, a promising way for tackling the computations involved is to build special-purpose hardware exhibiting a (much) better performance-cost ratio than off-the-shelf computers. This contribution presents a variety of cryptanalytical applications utilizing the cost-optimized parallel code breaker (COPACOBANA) machine, which is a high-performance low-cost cluster consisting of 120 field-programmable gate arrays (FPGAs). COPACOBANA appears to be the only such reconfigurable parallel FPGA machine optimized for code breaking tasks reported in the open literature. Depending on the actual algorithm, the parallel hardware architecture can outperform conventional computers by several orders of magnitude. In this work, we focus on novel implementations of cryptanalytical algorithms, utilizing the impressive computational power of COPACOBANA. We describe various exhaustive key search attacks on symmetric ciphers and demonstrate an attack on a security mechanism employed in the electronic passport (e-passport). Furthermore, we describe time-memory trade-off techniques that can, e.g., be used for attacking the popular A5/1 algorithm used in GSM voice encryption. In addition, we introduce efficient implementations of more complex cryptanalysis on asymmetric cryptosystems, e.g., elliptic curve cryptosystems (ECCs) and number cofactorization for RSA. Even though breaking RSA or elliptic curves with parameter lengths used in most practical applications is out of reach with COPACOBANA, our attacks on algorithms with artificially short bit lengths allow us to extrapolate more reliable security estimates for real-world bit lengths. This is particularly useful for deriving estimates about the longevity of asymmetric key lengths.
computer and communications security | 2011
Amir Moradi; Alessandro Barenghi; Timo Kasper; Christof Paar
Over the last two decades FPGAs have become central components for many advanced digital systems, e.g., video signal processing, network routers, data acquisition and military systems. In order to protect the intellectual property and to prevent fraud, e.g., by cloning a design embedded into an FPGA or manipulating its content, many current FPGAs employ a bitstream encryption feature. We develop a successful attack on the bitstream encryption engine integrated in the widespread Virtex-II Pro FPGAs from Xilinx, using side-channel analysis. After measuring the power consumption of a single power-up of the device and a modest amount of off-line computation, we are able to recover all three different keys used by its triple DES module. Our method allows extracting secret keys from any real-world device where the bitstream encryption feature of Virtex-II Pro is enabled. As a consequence, the target product can be cloned and manipulated at the will of the attacker since no side-channel protection was included into the design of the decryption module. Also, more advanced attacks such as reverse engineering or the introduction of hardware Trojans become potential threats. While performing the side-channel attack, we were able to deduce a hypothetical architecture of the hardware encryption engine. To our knowledge, this is the first attack against the bitstream encryption of a commercial FPGA reported in the open literature.
international conference on rfid | 2011
Timo Kasper; David Oswald; Christof Paar
As most modern cryptographic Radio Frequency Identification (RFID) devices are based on ciphers that are secure from a purely theoretical point of view, e.g., (Triple-)DES or AES, adversaries have been adopting new methods to extract secret information and cryptographic keys from contactless smartcards: Side-Channel Analysis (SCA) targets the physical implementation of a cipher and allows to recover secret keys by exploiting a side-channel, for instance, the electro-magnetic (EM) emanation of an Integrated Circuit (IC). In this paper we present an analog demodulator specifically designed for refining the SCA of contactless smartcards. The customized analogue hardware increases the quality of EM measurements, facilitates the processing of the side-channel leakage and can serve as a plug-in component to enhance any existing SCA laboratory. Employing it to obtain power profiles of several real-world cryptographic RFIDs, we demonstrate the effectiveness of our measurement setup and evaluate the improvement of our new analog technique compared to previously proposed approaches. Using the example of the popular Mifare DESFire MF3ICD40 contactless smartcard, we show that commercial RFID devices are susceptible to the proposed SCA methods. The security analyses presented in this paper do not require expensive equipment and demonstrate that SCA poses a severe threat to many real-world systems. This novel attack vector has to be taken into account when employing contactless smartcards in security-sensitive applications, e.g., for wireless payment or identification.
international conference on cryptology in africa | 2009
Markus Kasper; Timo Kasper; Amir Moradi; Christof Paar
We present the first simple power analysis (SPA) of software implementations of KeeLoq . Our attack drastically reduces the efforts required for a complete break of remote keyless entry (RKE) systems based on KeeLoq . We analyze implementations of KeeLoq on microcontrollers and exploit timing vulnerabilities to develop an attack that allows for a practical key recovery within seconds of computation time, thereby significantly outperforming all existing attacks: Only one single measurement of a section of a KeeLoq decryption is sufficient to extract the 64 bit master key of commercial products, without the prior knowledge of neither plaintext nor ciphertext. We further introduce techniques for effectively realizing an automatic SPA and a method for circumventing a simple countermeasure, that can also be applied for analyzing other implementations of cryptography on microcontrollers.
workshop on information security applications | 2009
Timo Kasper; David Oswald; Christof Paar
We introduce low-cost hardware for performing non-invasive side-channel attacks on Radio Frequency Identification Devices (RFID) and develop techniques for facilitating a correlation power analysis (CPA) in the presence of the field of an RFID reader. We practically verify the effectiveness of the developed methods by analysing the security of commercial contactless smartcards employing strong cryptography, pinpointing weaknesses in the protocol and revealing a vulnerability towards side-channel attacks. Employing the developed hardware, we present the first successful key-recovery attack on commercially available contactless smartcards based on the Data Encryption Standard (DES) or Triple-DES (3DES) cipher that are widely used for security-sensitive applications, e.g., payment purposes.
financial cryptography | 2010
Timo Kasper; Michael Silbermann; Christof Paar
We investigated a real-world contactless payment application based on mifare Classic cards. In order to analyze the security of the payment system, we combined previous cryptanalytical results and implemented an improved card-only attack with customized low-cost tools, that is to our knowledge the most efficient practical attack to date. We found several flaws implying severe security vulnerabilities on the system level that allow for devastating attacks including identity theft and recharging the amount of money on the cards. We practically verify and demonstrate the attacks on the commercial system.
workshop in information security theory and practice | 2007
Timo Kasper; Dario Carluccio; Christof Paar
ISO 14443 compliant smartcards are widely-used in privacy and security sensitive applications. Due to the contactless interface, they can be activated and read out from a distance. Thus, relay and other attacks are feasible, even without the owner noticing it. Tools being able to perform these attacks and carry out security analyses need to be developed. In this contribution, an implementation of a cost-effective, freely programmable ISO 14443 compliant multi function RFID reader and fake transponder is presented that can be employed for several promising purposes.
international conference on move to meaningful internet systems | 2007
Yifei Liu; Timo Kasper; Kerstin Lemke-Rust; Christof Paar
Since the introduction of the Machine Readable Travel Document (MRTD) that is also known as e-passport for human identification at border control debates have been raised about security and privacy concerns. In this paper, we present the first hardware implementation for cracking Basic Access Control (BAC) keys of the e-passport issuing schemes in Germany and the Netherlands. Our implementation was designed for the reprogrammable key search machine COPACOBANA and achieves a key search speed of 228 BAC keys per second. This is a speed-up factor of more than 200 if compared to previous results and allows for a runtime in the order of seconds in realistic scenarios.
workshop on fault diagnosis and tolerance in cryptography | 2009
Christof Paar; Thomas Eisenbarth; Markus Kasper; Timo Kasper; Amir Moradi
Last year we were able to break KeeLoq, which is a 64 bit block cipher that is popular for remote keyless entry (RKE) systems. KeeLoq RKEs are widely used for access control purposes such as garage openers or car door systems. Even though the attack seems almost straightforward in hindsight, there where many practical and theoretical problems to overcome. In this talk I want to describe the evolution of the attack over about two years. Also, some possible future improvements using fault-injection will be mentioned. During the first phase of breaking KeeLoq, a surprisingly long time was spent on analyzing the target hardware, taking measurements and wondering why we did not succeed. In the second phase, we were able to use differential power analysis attacks successfully on numerous commercially available products employing KeeLoq code hopping. Our techniques allow for efficiently revealing both the secret key of a remote transmitter and the manufacturer key stored in a receiver. As a result, a remote control can be cloned from only ten power traces, allowing for a practical key recovery in a few minutes. With similar techniques but with considerably more measurements (typically on the order of 10,000) we can extract the manufacturer key which is stored in every receiver device, e.g., a garage door opener unit. In the third phase, and most recent phase, we were able to come up with several improvements. Most notably, we found that an SPA (simple power analysis) attack allows to recover the manufacturer key with one measurement. In the talk, we will also speculate about extensions to fault-injection and timing attacks. It is important to note that most of our findings are not specific to KeeLoq but are - in principle - applicable to any symmetric cipher with an implementation that is not sidechannel resistant.