Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timo Vögtle is active.

Publication


Featured researches published by Timo Vögtle.


Blood | 2008

STIM1 is essential for Fcγ receptor activation and autoimmune inflammation

Attila Braun; J. Engelbert Gessner; David Varga-Szabo; Shahzad N. Syed; Stephanie Konrad; David Stegner; Timo Vögtle; Reinhold E. Schmidt; Bernhard Nieswandt

Fcgamma receptors (FcgammaRs) on mononuclear phagocytes trigger autoantibody and immune complex-induced diseases through coupling the self-reactive immunoglobulin G (IgG) response to innate effector pathways, such as phagocytosis, and the recruitment of inflammatory cells. FcRgamma-based activation is critical in the pathogenesis of these diseases, although the contribution of FcgammaR-mediated calcium signaling in autoimmune injury is unclear. Here we show that macrophages lacking the endoplasmic reticulum-resident calcium sensor, STIM1, cannot activate FcgammaR-induced Ca(2+) entry and phagocytosis. As a direct consequence, STIM1 deficiency results in resistance to experimental immune thrombocytopenia and anaphylaxis, autoimmune hemolytic anemia, and acute pneumonitis. These results establish STIM1 as a novel and essential component of FcgammaR activation and also indicate that inhibition of STIM1-dependent signaling might become a new strategy to prevent or treat IgG-dependent immunologic diseases.


Journal of Clinical Investigation | 2013

Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice

Carsten Deppermann; Deya Cherpokova; Paquita Nurden; Jan-Niklas Schulz; Ina Thielmann; Peter Kraft; Timo Vögtle; Christoph Kleinschnitz; Sebastian Dütting; Georg Krohne; Sabine A. Eming; Alan T. Nurden; Beate Eckes; Guido Stoll; David Stegner; Bernhard Nieswandt

Platelets are anuclear organelle-rich cell fragments derived from bone marrow megakaryocytes (MKs) that safeguard vascular integrity. The major platelet organelles, α-granules, release proteins that participate in thrombus formation and hemostasis. Proteins stored in α-granules are also thought to play a role in inflammation and wound healing, but their functional significance in vivo is unknown. Mutations in NBEAL2 have been linked to gray platelet syndrome (GPS), a rare bleeding disorder characterized by macrothrombocytopenia, with platelets lacking α-granules. Here we show that Nbeal2-knockout mice display the characteristics of human GPS, with defective α-granule biogenesis in MKs and their absence from platelets. Nbeal2 deficiency did not affect MK differentiation and proplatelet formation in vitro or platelet life span in vivo. Nbeal2-deficient platelets displayed impaired adhesion, aggregation, and coagulant activity ex vivo that translated into defective arterial thrombus formation and protection from thrombo-inflammatory brain infarction following focal cerebral ischemia. In a model of excisional skin wound repair, Nbeal2-deficient mice exhibited impaired development of functional granulation tissue due to severely reduced differentiation of myofibroblasts in the absence of α-granule secretion. This study demonstrates that platelet α-granule constituents are critically required not only for hemostasis but also thrombosis, acute thrombo-inflammatory disease states, and tissue reconstitution after injury.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Combined In Vivo Depletion of Glycoprotein VI and C-Type Lectin-Like Receptor 2 Severely Compromises Hemostasis and Abrogates Arterial Thrombosis in Mice

Markus Bender; Frauke May; Viola Lorenz; Ina Thielmann; Ina Hagedorn; Brenda A. Finney; Timo Vögtle; Katharina A. Remer; Attila Braun; Michael R. Bösl; Steve P. Watson; Bernhard Nieswandt

Objective—Platelet inhibition is a major strategy to prevent acute ischemic cardiovascular and cerebrovascular events, which may, however, be associated with an increased bleeding risk. The (hem)immunoreceptor tyrosine activation motif–bearing platelet receptors, glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2), might be promising antithrombotic targets because they can be depleted from circulating platelets by antibody treatment, leading to sustained antithrombotic protection, but only moderately increased bleeding times in mice. Approach and Results—We investigated whether both (hem)immunoreceptor tyrosine activation motif–bearing receptors can be targeted simultaneously and what the in vivo consequences of such a combined therapeutic GPVI/CLEC-2 deficiency are. We demonstrate that isolated targeting of either GPVI or CLEC-2 in vivo does not affect expression or function of the respective other receptor. Moreover, simultaneous treatment with both antibodies resulted in the sustained loss of both GPVI and CLEC-2, while leaving other activation pathways intact. However, GPVI/CLEC-2–depleted mice displayed a dramatic hemostatic defect and profound impairment of arterial thrombus formation. Furthermore, a strongly diminished hemostatic response could also be reproduced in mice genetically lacking GPVI and CLEC-2. Conclusions—These results demonstrate that GPVI and CLEC-2 can be simultaneously downregulated in platelets in vivo and reveal an unexpected functional redundancy of the 2 receptors in hemostasis and thrombosis. These findings may have important implications of the potential use of anti-GPVI and anti–CLEC-2–based agents in the prevention of thrombotic diseases.


Journal of Immunology | 2009

STIM1-Independent T Cell Development and Effector Function In Vivo

Niklas Beyersdorf; Attila Braun; Timo Vögtle; David Varga-Szabo; Ronmy Rivera Galdos; Stephan Kissler; Thomas Kerkau; Bernhard Nieswandt

Store-operated Ca2+ entry (SOCE) is believed to be of pivotal importance in T cell physiology. To test this hypothesis, we generated mice constitutively lacking the SOCE-regulating Ca2+ sensor stromal interaction molecule 1 (STIM1). In vitro analyses showed that SOCE and Ag receptor complex-triggered Ca2+ flux into STIM1-deficient T cells is virtually abolished. In vivo, STIM1-deficient mice developed a lymphoproliferative disease despite normal thymic T cell maturation and normal frequencies of CD4+Foxp3+ regulatory T cells. Unexpectedly, STIM1-deficient bone marrow chimeric mice mounted humoral immune responses after vaccination and STIM1-deficient T cells were capable of inducing acute graft-versus-host disease following adoptive transfer into allogeneic hosts. These results demonstrate that STIM1-dependent SOCE is crucial for homeostatic T cell proliferation, but of much lesser importance for thymic T cell differentiation or T cell effector functions.


Journal of Clinical Investigation | 2012

STIM1 regulates calcium signaling in taste bud cells and preference for fat in mice.

Gado Dramane; Souleymane Abdoul-Azize; Aziz Hichami; Timo Vögtle; Simon Akpona; Christophe Chouabe; Hassimi Sadou; Bernhard Nieswandt; Philippe Besnard; Naim Akhtar Khan

Understanding the mechanisms underlying oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. The lipid-binding glycoprotein CD36, which is expressed by circumvallate papillae (CVP) of the mouse tongue, has been implicated in oro-gustatory perception of dietary lipids. Here, we demonstrate that stromal interaction molecule 1 (STIM1), a sensor of Ca(2+) depletion in the endoplasmic reticulum, mediates fatty acid-induced Ca(2+) signaling in the mouse tongue and fat preference. We showed that linoleic acid (LA) induced the production of arachidonic acid (AA) and lysophosphatidylcholine (Lyso-PC) by activating multiple phospholipase A2 isoforms via CD36. This activation triggered Ca(2+) influx in CD36-positive taste bud cells (TBCs) purified from mouse CVP. LA also induced the production of Ca(2+) influx factor (CIF). STIM1 was found to regulate LA-induced CIF production and the opening of multiple store-operated Ca(2+) (SOC) channels. Furthermore, CD36-positive TBCs from Stim1-/- mice failed to release serotonin, and Stim1-/- mice lost the spontaneous preference for fat that was observed in wild-type animals. Our results suggest that fatty acid-induced Ca(2+) signaling, regulated by STIM1 via CD36, might be implicated in oro-gustatory perception of dietary lipids and the spontaneous preference for fat.


Blood | 2015

Rap1-GTP-interacting adaptor molecule (RIAM) is dispensable for platelet integrin activation and function in mice.

Simon Stritt; Karen Wolf; Viola Lorenz; Timo Vögtle; Shuchi Gupta; Michael R. Bösl; Bernhard Nieswandt

Platelet aggregation at sites of vascular injury is essential for hemostasis but also thrombosis. Platelet adhesiveness is critically dependent on agonist-induced inside-out activation of heterodimeric integrin receptors by a mechanism involving the recruitment of talin-1 to the cytoplasmic integrin tail. Experiments in heterologous cells have suggested a critical role of Rap1-guanosine triphosphate-interacting adaptor molecule (RIAM) for talin-1 recruitment and thus integrin activation, but direct in vivo evidence to support this has been missing. We generated RIAM-null mice and found that they are viable, fertile, and apparently healthy. Unexpectedly, platelets from these mice show unaltered β3- and β1-integrin activation and consequently normal adhesion and aggregation responses under static and flow conditions. Similarly, hemostasis and arterial thrombus formation were indistinguishable between wild-type and RIAM-null mice. These results reveal that RIAM is dispensable for integrin activation and function in mouse platelets, strongly suggesting the existence of alternative mechanisms of talin-1 recruitment.


Blood | 2015

Targeted downregulation of platelet CLEC-2 occurs through Syk-independent internalization

Viola Lorenz; David Stegner; Simon Stritt; Timo Vögtle; Friedemann Kiefer; Walter Witke; Steve P. Watson; Barbara Walzog; Bernhard Nieswandt

Platelet aggregation at sites of vascular injury is not only essential for hemostasis, but may also cause acute ischemic disease states such as myocardial infarction or stroke. The hemi-immunoreceptor tyrosine-based activation motif-containing C-type lectinlike receptor 2 (CLEC-2) mediates powerful platelet activation through a Src- and spleen tyrosine kinase (Syk)-dependent tyrosine phosphorylation cascade. Thereby, CLEC-2 not only contributes to thrombus formation and stabilization but also plays a central role in blood-lymphatic vessel development, tumor metastasis, and prevention of inflammatory bleeding, making it a potential pharmacologic target to modulate these processes. We have previously shown that injection of the anti-CLEC-2 antibody, INU1, results in virtually complete immunodepletion of platelet CLEC-2 in mice, which is, however, preceded by a severe transient thrombocytopenia thereby limiting its potential therapeutic use. The mechanisms underlying this targeted CLEC-2 downregulation have remained elusive. Here, we show that INU1-induced CLEC-2 immunodepletion occurs through Src-family kinase-dependent receptor internalization in vitro and in vivo, presumably followed by intracellular degradation. In mice with platelet-specific Syk deficiency, INU1-induced CLEC-2 internalization/degradation was fully preserved whereas the associated thrombocytopenia was largely prevented. These results show for the first time that CLEC-2 can be downregulated from the platelet surface through internalization in vitro and in vivo and that this can be mechanistically uncoupled from the associated antibody-induced thrombocytopenia.


European Journal of Immunology | 2015

Orai1 controls C5a-induced neutrophil recruitment in inflammation

Georgios Sogkas; Timo Vögtle; Eduard Rau; Britta Gewecke; David Stegner; Reinhold E. Schmidt; Bernhard Nieswandt; J. Engelbert Gessner

Stromal interaction molecule 1 (STIM1)‐dependent store operated calcium‐entry (SOCE) through Orai1‐mediated calcium (Ca2+) influx is considered a major pathway of Ca2+ signaling, serving T‐cell, mast cell, and platelet responses. Here, we show that Orai1 is critical for neutrophil function. Orai1‐deficient neutrophils present defects in fMLP and complement C5a‐induced Ca2+ influx and migration, although they respond normally to another chemoattractant, CXCL2. Up until now, no specific contribution of Orai1 independent from STIM1 or SOCE has been recognized in immune cells. Here, we observe that Orai1‐deficient neutrophils exhibit normal STIM1‐dependent SOCE and STIM1‐deficient neutrophils respond to fMLP and C5a efficiently. Despite substantial cytokine production, Orai1−/− chimeric mice show impaired neutrophil recruitment in LPS‐induced peritonitis. Moreover, Orai1 deficiency results in profoundly defective C5a‐triggered neutrophil lung recruitment in hypersensitivity pneumonitis. Comparative evaluation of inflammation in Stim1−/− chimeras reveals a distinct pathogenic contribution of STIM1, including its involvement in IgG‐induced C5a production. Our data establish Orai1 as key signal mediator of C5aR activation, contributing to inflammation by a STIM1‐independent pathway of Ca2+‐influx in neutrophils.


Journal of Thrombosis and Haemostasis | 2012

The SLAM family member CD84 is regulated by ADAM10 and calpain in platelets

Sebastian Hofmann; Timo Vögtle; Markus Bender; Stefan Rose-John; Bernhard Nieswandt

Hofmann S, Vögtle T, Bender M, Rose‐John S, Nieswandt B. The SLAM family member CD84 is regulated by ADAM10 and calpain in platelets. J Thromb Haemost 2012; 10: 2581–92.


Blood | 2017

Twinfilin 2a regulates platelet reactivity and turnover in mice

Simon Stritt; Sarah Beck; Isabelle C. Becker; Timo Vögtle; Markku Hakala; Katrin G. Heinze; Xiaoping Du; Markus Bender; Attila Braun; Pekka Lappalainen; Bernhard Nieswandt

Regulated reorganization of the actin cytoskeleton is a prerequisite for proper platelet production and function. Consequently, defects in proteins controlling actin dynamics have been associated with platelet disorders in humans and mice. Twinfilin 2a (Twf2a) is a small actin-binding protein that inhibits actin filament assembly by sequestering actin monomers and capping filament barbed ends. Moreover, Twf2a binds heterodimeric capping proteins, but the role of this interaction in cytoskeletal dynamics has remained elusive. Even though Twf2a has pronounced effects on actin dynamics in vitro, only little is known about its function in vivo. Here, we report that constitutive Twf2a-deficient mice (Twf2a-/-) display mild macrothrombocytopenia due to a markedly accelerated platelet clearance in the spleen. Twf2a-/- platelets showed enhanced integrin activation and α-granule release in response to stimulation of (hem) immunoreceptor tyrosine-based activation motif (ITAM) and G-protein-coupled receptors, increased adhesion and aggregate formation on collagen I under flow, and accelerated clot retraction and spreading on fibrinogen. In vivo, Twf2a deficiency resulted in shortened tail bleeding times and faster occlusive arterial thrombus formation. The hyperreactivity of Twf2a-/- platelets was attributed to enhanced actin dynamics, characterized by an increased activity of n-cofilin and profilin 1, leading to a thickened cortical cytoskeleton and hence sustained integrin activation by limiting calpain-mediated integrin inactivation. In summary, our results reveal the first in vivo functions of mammalian Twf2a and demonstrate that Twf2a-controlled actin rearrangements dampen platelet activation responses in a n-cofilin- and profilin 1-dependent manner, thereby indirectly regulating platelet reactivity and half-life in mice.

Collaboration


Dive into the Timo Vögtle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shahzad N. Syed

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge