Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy A. Wencewicz is active.

Publication


Featured researches published by Timothy A. Wencewicz.


The Journal of Antibiotics | 2014

Prospects for new antibiotics: a molecule-centered perspective.

Christopher T. Walsh; Timothy A. Wencewicz

There is a continuous need for iterative cycles of antibiotic discovery and development to deal with the selection of resistant pathogens that emerge as therapeutic application of an antibiotic becomes widespread. A short golden age of antibiotic discovery from nature followed by a subsequent golden half century of medicinal chemistry optimization of existing molecular scaffolds emphasizes the need for new antibiotic molecular frameworks. We bring a molecule-centered perspective to the questions of where will new scaffolds come from, when will chemogenetic approaches yield useful new antibiotics and what existing bacterial targets merit contemporary re-examination.


Biometals | 2009

Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin “Trojan Horse” antibiotics and synthetic desferridanoxamine-antibiotic conjugates

Timothy A. Wencewicz; Ute Möllmann; Timothy E. Long; Marvin J. Miller

The recent rise in drug resistance found amongst community acquired infections has sparked renewed interest in developing antimicrobial agents that target resistant organisms and limit the natural selection of immune variants. Recent discoveries have shown that iron uptake systems in bacteria and fungi are suitable targets for developing such therapeutic agents. The use of siderophore-drug conjugates as “Trojan Horse” drug delivery agents has attracted particular interest in this area. This review will discuss efforts in our research group to study the salmycin class of “Trojan Horse” antibiotics. Inspired by the natural design of the salmycins, a series of desferridanoxamine-antibiotic conjugates were synthesized and tested in microbial growth inhibition assays. The results of these studies will be related to understanding the role of drug release in siderophore-mediated drug delivery with implications for future siderophore-drug conjugate design.


Journal of Medicinal Chemistry | 2013

Biscatecholate-monohydroxamate mixed ligand siderophore-carbacephalosporin conjugates are selective sideromycin antibiotics that target Acinetobacter baumannii.

Timothy A. Wencewicz; Marvin J. Miller

Chemical syntheses and biological evaluation of biscatecholate-monohydroxamate mixed ligand sideromycins utilizing the carbacephalosporin β-lactam antibiotic loracarbef and the fluoroquinolone antibiotic ciprofloxacin are described. The mixed ligand β-lactam sideromycin (1b) had remarkably selective and extremely potent antibacterial activity against the Gram-negative pathogen Acinetobacter baumannii ATCC 17961 (MIC = 0.0078 μM). The antibacterial activity of the β-lactam sideromycin was inversely related to the iron(III) concentration in the testing media and was antagonized by the presence of the competing parent siderophore. These data suggested that active transport of the mixed ligand β-lactam sideromycin across the outer cell membrane of A. baumannii via siderophore-uptake pathways was responsible for the selective and potent antibacterial activity.


Journal of Biological Chemistry | 2010

Comprehensive spectroscopic, steady state, and transient kinetic studies of a representative siderophore-associated flavin monooxygenase

Jeffery A. Mayfield; Rosanne E. Frederick; Bennett R. Streit; Timothy A. Wencewicz; David P. Ballou; Jennifer L. DuBois

Many siderophores used for the uptake and intracellular storage of essential iron contain hydroxamate chelating groups. Their biosyntheses are typically initiated by hydroxylation of the primary amine side chains of l-ornithine or l-lysine. This reaction is catalyzed by members of a widespread family of FAD-dependent monooxygenases. Here the kinetic mechanism for a representative family member has been extensively characterized by steady state and transient kinetic methods, using heterologously expressed N5-l-ornithine monooxygenase from the pathogenic fungus Aspergillus fumigatus. Spectroscopic data and kinetic analyses suggest a model in which a molecule of hydroxylatable substrate serves as an activator for the reaction of the reduced flavin and O2. The rate acceleration is only ∼5-fold, a mild effect of substrate on formation of the C4a-hydroperoxide that does not influence the overall rate of turnover. The effect is also observed with the bacterial ornithine monooxygenase PvdA. The C4a-hydroperoxide is stabilized in the absence of hydroxylatable substrate by the presence of bound NADP+ (t½ = 33 min, 25 °C, pH 8). NADP+ therefore is a likely regulator of O2 and substrate reactivity in the siderophore-associated monooxygenases. Aside from the activating effect of the hydroxylatable substrate, the siderophore-associated monooxygenases share a kinetic mechanism with the hepatic microsomal flavin monooxygenases and bacterial Baeyer-Villiger monooxygenases, with which they share only moderate sequence homology and from which they are distinguished by their acute substrate specificity. The remarkable specificity of the N5-l-ornithine monooxygenase-catalyzed reaction suggests added means of reaction control beyond those documented in related well characterized flavoenzymes.


Chemistry & Biology | 2015

The Tetracycline Destructases: A Novel Family of Tetracycline-Inactivating Enzymes

Kevin J. Forsberg; Sanket Patel; Timothy A. Wencewicz; Gautam Dantas

Enzymes capable of inactivating tetracycline are paradoxically rare compared with enzymes that inactivate other natural-product antibiotics. We describe a family of flavoenzymes, previously unrecognizable as resistance genes, which are capable of degrading tetracycline antibiotics. From soil functional metagenomic selections, we discovered nine genes that confer high-level tetracycline resistance by enzymatic inactivation. We also demonstrate that a tenth enzyme, an uncharacterized homolog in the human pathogen Legionella longbeachae, similarly inactivates tetracycline. These enzymes catalyze the oxidation of tetracyclines in vitro both by known mechanisms and via previously undescribed activity. Tetracycline-inactivation genes were identified in diverse soil types, encompass substantial sequence diversity, and are adjacent to genes implicated in horizontal gene transfer. Because tetracycline inactivation is scarcely observed in hospitals, these enzymes may fill an empty niche in pathogenic organisms, and should therefore be monitored for their dissemination potential into the clinic.


Journal of Medicinal Chemistry | 2011

N-O Chemistry for Antibiotics: Discovery of N-Alkyl-N-(pyridin-2-yl)hydroxylamine Scaffolds as Selective Antibacterial Agents Using Nitroso Diels-Alder and Ene Chemistry

Timothy A. Wencewicz; Baiyuan Yang; James R. Rudloff; Allen G. Oliver; Marvin J. Miller

The discovery, syntheses, and structure-activity relationships (SAR) of a new family of heterocyclic antibacterial compounds based on N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds are described. A structurally diverse library of ∼100 heterocyclic molecules generated from Lewis acid-mediated nucleophilic ring-opening reactions with nitroso Diels-Alder cycloadducts and nitroso ene reactions with substituted alkenes was evaluated in whole cell antibacterial assays. Compounds containing the N-alkyl-N-(pyridin-2-yl)hydroxylamine structure demonstrated selective and potent antibacterial activity against the Gram-positive bacterium Micrococcus luteus ATCC 10240 (MIC(90) = 2.0 μM or 0.41 μg/mL) and moderate activity against other Gram-positive strains including antibiotic resistant strains of Staphylococcus aureus (MRSA) and Enterococcus faecalis (VRE). A new synthetic route to the active core was developed using palladium-catalyzed Buchwald-Hartwig amination reactions of N-alkyl-O-(4-methoxybenzyl)hydroxylamines with 2-halo-pyridines that facilitated SAR studies and revealed the simplest active structural fragment. This work shows the value of using a combination of diversity-oriented synthesis (DOS) and parallel synthesis for identifying new antibacterial scaffolds.


Bioorganic & Medicinal Chemistry Letters | 2010

Syntheses and antibacterial activity studies of new oxazolidinones from nitroso Diels–Alder chemistry

Shanshan Yan; Marvin J. Miller; Timothy A. Wencewicz; Ute Möllmann

A series of novel oxazolidinone antibiotics having [2.2.1] and [2.2.2] bicyclic oxazine moieties at the C-5 side chain of the A-ring was synthesized by nitroso Diels-Alder reactions, from three linezolid analogs containing morpholine, piperazine and thiomorpholine, respectively, as the C-ring components. Subsequent N-O bond cleavage generated oxazolidinones with 4-amino cyclo-2-en-1-ol substituents. The in vitro antibacterial activities of these oxazolidinone analogs were evaluated.


Biochemistry | 2012

Pseudomonas syringae self-protection from tabtoxinine-β-lactam by ligase TblF and acetylase Ttr.

Timothy A. Wencewicz; Christopher T. Walsh

Plant pathogenic Pseudomonas syringae produce the hydroxy-β-lactam antimetabolite tabtoxinine-β-lactam (TβL) as a time-dependent inactivating glutamine analogue of plant glutamine synthetases. The producing pseudomonads use multiple modes of self-protection, two of which are characterized in this study. The first is the dipeptide ligase TblF which converts tabtoxinine-β-lactam to the TβL-Thr dipeptide known as tabtoxin. The dipeptide is not recognized by glutamine synthetase. This represents a Trojan Horse strategy: the dipeptide is secreted, taken up by dipeptide permeases in neighboring cells, and TβL is released by peptidase action. The second self-protection mode is elaboration by the acetyltransferase Ttr, which acetylates the α-amino group of the proximal inactivator TβL, but not the tabtoxin dipeptide.


Nature Chemical Biology | 2017

[beta]-Lactone formation during product release from a nonribosomal peptide synthetase

Jason E Schaffer; Margaret R Reck; Neha K Prasad; Timothy A. Wencewicz

Nonribosomal peptide synthetases (NRPSs) are multidomain modular biosynthetic assembly lines that polymerize amino acids into a myriad of biologically active nonribosomal peptides (NRPs). NRPS thioesterase (TE) domains employ diverse release strategies for off-loading thioester-tethered polymeric peptides from termination modules typically via hydrolysis, aminolysis, or cyclization to provide mature antibiotics as carboxylic acids/esters, amides, and lactams/lactones, respectively. Here we report the enzyme-catalyzed formation of a highly strained β-lactone ring during TE-mediated cyclization of a β-hydroxythioester to release the antibiotic obafluorin (Obi) from an NRPS assembly line. The Obi NRPS (ObiF) contains a type I TE domain with a rare catalytic cysteine residue that plays a direct role in β-lactone ring formation. We present a detailed genetic and biochemical characterization of the entire Obi biosynthetic gene cluster in plant-associated Pseudomonas fluorescens ATCC 39502 that establishes a general strategy for β-lactone biogenesis.


Organic Letters | 2012

Iron(III)-templated macrolactonization of trihydroxamate siderophores.

Timothy A. Wencewicz; Allen G. Oliver; Marvin J. Miller

A method was developed to synthesize macrocyclic trihydroxamate siderophores using optimized Yamaguchi macrolactonization conditions. The natural ability of siderophores to bind iron(III) was exploited to template the reactions and allowed for rapid reaction rates, high product conversions, and the formation of large macrolactone rings up to 35 atoms. An X-ray structure of a 33-membered macrolactone siderophore-Fe(III) complex is presented.

Collaboration


Dive into the Timothy A. Wencewicz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margaret R Reck

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gautam Dantas

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jana L. Markley

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Justin A. Shapiro

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Mohammed Hashmat Ali

Southeast Missouri State University

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Gasparrini

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Chanez Tiffany Symister

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge