Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy C. Doyle is active.

Publication


Featured researches published by Timothy C. Doyle.


Journal of Biomedical Optics | 2005

Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo

Hui Zhao; Timothy C. Doyle; Olivier Coquoz; Flora Kalish; Bradley W. Rice; Christopher H. Contag

In vivo bioluminescence imaging depends on light emitted by luciferases in the body overcoming the effect of tissue attenuation. Understanding this relationship is essential for detection and quantification of signal. We have studied four codon optimized luciferases with different emission spectra, including enzymes from firefly (FLuc), click beetle (CBGr68, CBRed) and Renilla reniformins (hRLuc). At 25 degrees C, the in vitro lambda(max) of these reporters are 578, 543, 615, and 480 nm, respectively; at body temperature, 37 degrees C, the brightness increases and the firefly enzyme demonstrates a 34-nm spectral red shift. Spectral shifts and attenuation due to tissue effects were evaluated using a series of 20-nm bandpass filters and a cooled charge-coupled device (CCD) camera. Attenuation increased and the spectra of emitted light was red shifted for signals originating from deeper within the body relative to superficial origins. The tissue attenuation of signals from CBGr68 and hRLuc was greater than from those of Fluc and CBRed. To further probe tissue effects, broad spectral emitters were created through gene fusions between CBGr68 and CBRed. These resulted in enzymes with broader emission spectra, featuring two peaks whose intensities are differentially affected by temperature and tissue depth. These spectral measurement data allow for improved understanding of how these reporters can be used in vivo and what they can reveal about biological processes in living subjects.


Cellular Microbiology | 2004

In vivo bioluminescence imaging for integrated studies of infection

Timothy C. Doyle; Stacy M. Burns; Christopher H. Contag

Understanding biological processes in the context of intact organ systems with fine temporal resolution has required the development of imaging strategies that reveal cellular and molecular changes in the living body. Reporter genes that confer optical signatures on a given biological process have been used widely in cell biology and have been used more recently to interrogate biological processes in living animal models of human biology and disease. The use of internal biological sources of light, luciferases, to tag cells, pathogens, and genes has proved to be a versatile tool to provide in vivo indicators that can be detected externally. The application of this technology to the study of animal models of infectious disease has not only provided insights into disease processes, but has also revealed new mechanisms by which pathogens may avoid host defences during infection.


Circulation | 2009

Hepatocyte Growth Factor or Vascular Endothelial Growth Factor Gene Transfer Maximizes Mesenchymal Stem Cell–Based Myocardial Salvage After Acute Myocardial Infarction

T. Deuse; Christoph Peter; Paul W.M. Fedak; Timothy C. Doyle; Hermann Reichenspurner; Wolfram H. Zimmermann; Thomas Eschenhagen; William Stein; Joseph C. Wu; Robert C. Robbins; Sonja Schrepfer

Background— Mesenchymal stem cell (MSC)-based regenerative strategies were investigated to treat acute myocardial infarction and improve left ventricular function. Methods and Results— Murine AMI was induced by coronary ligation with subsequent injection of MSCs, hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), or MSCs +HGF/VEGF into the border zone. Left ventricular ejection fraction was calculated using micro–computed tomography imaging after 6 months. HGF and VEGF protein injection (with or without concomitant MSC injection) significantly and similarly improved the left ventricular ejection fraction and reduced scar size compared with the MSC group, suggesting that myocardial recovery was due to the cytokines rather than myocardial regeneration. To provide sustained paracrine effects, HGF or VEGF overexpressing MSCs were generated (MSC-HGF, MSC-VEGF). MSC-HGF and MSC-VEGF showed significantly increased in vitro proliferation and increased in vivo proliferation within the border zone. Cytokine production correlated with MSC survival. MSC-HGF– and MSC-VEGF–treated animals showed smaller scar sizes, increased peri-infarct vessel densities, and better preserved left ventricular function when compared with MSCs transfected with empty vector. Murine cardiomyocytes were exposed to hypoxic in vitro conditions. The LDH release was reduced, fewer cardiomyocytes were apoptotic, and Akt activity was increased if cardiomyocytes were maintained in conditioned medium obtained from MSC-HGF or MSC-VEGF cultures. Conclusions— This study showed that (1) elevating the tissue levels of HGF and VEGF after acute myocardial infarction seems to be a promising reparative therapeutic approach, (2) HGF and VEGF are cardioprotective by increasing the tolerance of cardiomyocytes to ischemia, reducing cardiomyocyte apoptosis and increasing prosurvival Akt activation, and (3) MSC-HGF and MSC-VEGF are a valuable source for increased cytokine production and maximize the beneficial effect of MSC-based repair strategies.


Transplantation | 2005

Molecular imaging using labeled donor tissues reveals patterns of engraftment, rejection, and survival in transplantation

Yu An Cao; Michael H. Bachmann; Andreas Beilhack; Yang Yang; Masashi Tanaka; Rutger Jan Swijnenburg; Robert Reeves; Cariel Taylor-Edwards; Stephan Schulz; Timothy C. Doyle; C. Garrison Fathman; Robert C. Robbins; Leonore A. Herzenberg; Robert S. Negrin; Christopher H. Contag

Tissue regeneration and transplantation of solid organs involve complex processes that can only be studied in the context of the living organism, and methods of analyzing these processes in vivo are essential for development of effective transplantation and regeneration procedures. We utilized in vivo bioluminescence imaging (BLI) to noninvasively visualize engraftment, survival, and rejection of transplanted tissues from a transgenic donor mouse that constitutively expresses luciferase. Dynamic early events of hematopoietic reconstitution were accessible and engraftment from as few as 200 transplanted whole bone marrow (BM) cells resulted in bioluminescent foci in lethally irradiated, syngeneic recipients. The transplantation of autologous pancreatic Langerhans islets and of allogeneic heart revealed the tempo of transplant degeneration or immune rejection over time. This imaging approach is sensitive and reproducible, permits study of the dynamic range of the entire process of transplantation, and will greatly enhance studies across various disciplines involving transplantation.


Molecular Imaging | 2004

Characterization of coelenterazine analogs for measurements of renilla luciferase activity in live cells and living animals

Hui Zhao; Timothy C. Doyle; Ronald J. Wong; Yu-An Cao; David K. Stevenson; David Piwnica-Worms; Christopher H. Contag

In vivo imaging of bioluminescent reporters relies on expression of light-emitting enzymes, luciferases, and delivery of chemical substrates to expressing cells. Coelenterazine (CLZN) is the substrate for a group of bioluminescent enzymes obtained from marine organisms. At present, there are more than 10 commercially available CLZN analogs. To determine which analog is most suitable for activity measurements in live cells and living animals, we characterized 10 CLZN analogs using Renilla luciferase (Rluc) as the reporter enzyme. For each analog, we monitored enzyme activity, auto-oxidation, and efficiency of cellular uptake. All CLZN analogs tested showed higher auto-oxidation signals in serum than was observed in phosphate buffer or medium, mainly as a result of auto-oxidation by binding to albumin. CLZN-f, -h, and -e analogs showed 4- to 8-fold greater Rluc activity, relative to CLZN-native, in cells expressing the enzyme from a stable integrant. In studies using living mice expressing Rluc in hepatocytes, administration of CLZN-e and -native produced the highest signal. Furthermore, distinct temporal differences in signal for each analog were revealed following intravenous or intraperitoneal delivery. We conclude that the CLZN analogs that are presently available vary with respect to hRluc utilization in culture and in vivo, and that the effective use of CLZN-utilizing enzymes in living animals depends on the selection of an appropriate substrate.


Journal of Orthopaedic Research | 2009

Stem cell-mediated accelerated bone healing observed with in vivo molecular and small animal imaging technologies in a model of skeletal injury.

Sheen-Woo Lee; Parasuraman Padmanabhan; Pritha Ray; Sanjiv S. Gambhir; Timothy C. Doyle; Christopher H. Contag; Stuart B. Goodman; Sandip Biswal

Adult stem cells are promising therapeutic reagents for skeletal regeneration. We hope to validate by molecular imaging technologies the in vivo life cycle of adipose‐derived multipotent cells (ADMCs) in an animal model of skeletal injury. Primary ADMCs were lentivirally transfected with a fusion reporter gene and injected intravenously into mice with bone injury or sham operation. Bioluminescence imaging (BLI), [18F]FHBG (9‐(fluoro‐hydroxy‐methyl‐butyl‐guanine)‐micro‐PET, [18F]Fluoride ion micro‐PET and micro‐CT were performed to monitor stem cells and their effect. Bioluminescence microscopy and immunohistochemistry were done for histological confirmation. BLI showed ADMCs traffic from the lungs then to the injury site. BLI microscopy and immunohistochemistry confirmed the ADMCs in the bone defect. Micro‐CT measurements showed increased bone healing in the cell‐injected group compared to the noninjected group at postoperative day 7 (p < 0.05). Systemically administered ADMCs traffic to the site of skeletal injury and facilitate bone healing, as demonstrated by molecular and small animal imaging. Molecular imaging technologies can validate the usage of adult adipose tissue‐derived multipotent cells to promote fracture healing. Imaging can in the future help establish therapeutic strategies including dosage and administration route.


Biotechnology and Bioengineering | 1997

Bioremediation of uranium-bearing wastewater: Biochemical and chemical factors influencing bioprocess application

Lynne E. Macaskie; Ping Yong; Timothy C. Doyle; Manuel G. Roig; Margarita Díaz; Teresa Martínez Manzano

A biotechnological process for the removal of heavy metals from aqueous solution utilizes enzymatically liberated phosphate ligand which precipitates with heavy metals (M) as cell-bound MHPO(4). The enzyme, a phosphatase, obeys Michaelis-Menten kinetics in resting and immobilized cells; an integrated form of the Michaelis-Menten equation was used to calculate the apparent K(m) (K(m app.)) as operating in immobilized cells in flow-through columns by a ratio method based on the use of two enzyme loadings (E(o1), E(o2)) or two input substrate concentrations (S(o1), S(o2)). The calculated K(m app.) (4.08 mM) was substituted into an equation to describe the removal of metals by immobilized cells. In operation the activity of the bioreactor was in accordance with that predicted mathematically, within 10%. The initial tests were done at neutral pH, whereas the pH of industrial wastewaters is often low; an increase in the K(m app.) at low pH was found in previous studies. Immobilized cells were challenged with acidic mine drainage wastewaters, where the limiting factors were chemical and not biochemical. Bioreactors initially lost activity in this water, but recovered to remove uranyl ion with more than 70% efficiency under steady-state conditions in the presence of competing cations and anions. Possible reasons for the bioreactor recovery are chemical crystallization factors. (c) 1997 John Wiley & Sons, Inc.


Thoracic and Cardiovascular Surgeon | 2010

Angiogenic Effects Despite Limited Cell Survival of Bone Marrow-Derived Mesenchymal Stem Cells under Ischemia

J. Hoffmann; A. J. Glassford; Timothy C. Doyle; R.C. Robbins; Sonja Schrepfer; Marc P. Pelletier

Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent and secrete angiogenic factors, which could help patients with occlusive arterial diseases. We hypothesize that MSCs, in comparison to fibroblasts, survive better under hypoxic conditions in vitro and in vivo. MSCs and fibroblasts from L2G mice expressing firefly luciferase and GFP were cultured in normoxic and hypoxic conditions for 24 hours. In vitro cell viability was tested by detecting apoptosis and necrosis. MSCs released higher amounts of VEGF (281.1 +/- 62.6 pg/ml) under hypoxic conditions compared to normoxia (154.9 +/- 52.3 pg/ml, p = NS), but were less tolerant to hypoxia (45 +/- 7.9%) than fibroblasts (28.1 +/- 3.6%, p = NS). A hindlimb ischemia model was created by ligating the femoral artery of 18 FVB mice. After one week, 1 x 106 cells (MSCs, fibroblasts or saline) were injected into the limb muscles of each animal (n = 6 per group). Bioluminescence measurement to assess the viability of luciferase positive cells showed significant proliferation of MSCs on day four compared to fibroblasts (p = 0.001). Three weeks after cell delivery, the capillary to muscle fiber ratio of ischemic areas was analyzed. In the MSC group, vessel density was significantly higher than in the fibroblast or control group (0.5 +/- 0.08 and 0.3 +/- 0.03). Under hypoxia, MSCs produced more VEGF compared to normal conditions and MSC transplantation into murine ischemic limbs led to an increase in vessel density, although MSC survival was limited. This study suggests that MSC transplantation may be an effective and clinically relevant tool in the therapy of occlusive arterial diseases.


Gene Therapy | 2009

siRNA silencing of keratinocyte-specific GFP expression in a transgenic mouse skin model

Emilio Gonzalez-Gonzalez; Hyejun Ra; Robyn P. Hickerson; Qizhao Wang; Wibool Piyawattanametha; Michael J. Mandella; Gordon S. Kino; Devin Leake; A A Avilion; Olav Solgaard; Timothy C. Doyle; Christopher H. Contag; Roger L. Kaspar

Small interfering RNAs (siRNAs) can be designed to specifically and potently target and silence a mutant allele, with little or no effect on the corresponding wild-type allele expression, presenting an opportunity for therapeutic intervention. Although several siRNAs have entered clinical trials, the development of siRNA therapeutics as a new drug class will require the development of improved delivery technologies. In this study, a reporter mouse model (transgenic click beetle luciferase/humanized monster green fluorescent protein) was developed to enable the study of siRNA delivery to skin; in this transgenic mouse, green fluorescent protein reporter gene expression is confined to the epidermis. Intradermal injection of siRNAs targeting the reporter gene resulted in marked reduction of green fluorescent protein expression in the localized treatment areas as measured by histology, real-time quantitative polymerase chain reaction and intravital imaging using a dual-axes confocal fluorescence microscope. These results indicate that this transgenic mouse skin model, coupled with in vivo imaging, will be useful for development of efficient and ‘patient-friendly’ siRNA delivery techniques and should facilitate the translation of siRNA-based therapeutics to the clinic for treatment of skin disorders.


Circulation-cardiovascular Imaging | 2014

Near-Infrared II Fluorescence for Imaging Hindlimb Vessel Regeneration With Dynamic Tissue Perfusion Measurement

Guosong Hong; Jerry C. Lee; Arshi Jha; Shuo Diao; Karina H. Nakayama; Luqia Hou; Timothy C. Doyle; Joshua T. Robinson; Alexander L. Antaris; Hongjie Dai; John P. Cooke; Ngan F. Huang

Background—Real-time vascular imaging that provides both anatomic and hemodynamic information could greatly facilitate the diagnosis of vascular diseases and provide accurate assessment of therapeutic effects. Here, we have developed a novel fluorescence-based all-optical method, named near-infrared II (NIR-II) fluorescence imaging, to image murine hindlimb vasculature and blood flow in an experimental model of peripheral arterial disease, by exploiting fluorescence in the NIR-II region (1000–1400 nm) of photon wavelengths. Methods and Results—Because of the reduced photon scattering of NIR-II fluorescence compared with traditional NIR fluorescence imaging and thus much deeper penetration depth into the body, we demonstrated that the mouse hindlimb vasculature could be imaged with higher spatial resolution than in vivo microscopic computed tomography. Furthermore, imaging during 26 days revealed a significant increase in hindlimb microvascular density in response to experimentally induced ischemia within the first 8 days of the surgery (P<0.005), which was confirmed by histological analysis of microvascular density. Moreover, the tissue perfusion in the ischemic hindlimb could be quantitatively measured by the dynamic NIR-II method, revealing the temporal kinetics of blood flow recovery that resembled microbead-based blood flowmetry and laser Doppler blood spectroscopy. Conclusions—The penetration depth of millimeters, high spatial resolution, and fast acquisition rate of NIR-II imaging make it a useful imaging tool for murine models of vascular disease.

Collaboration


Dive into the Timothy C. Doyle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emil Reisler

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Hensley

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge