Timothy D. Bogart
University of Texas at Austin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Timothy D. Bogart.
Journal of the American Chemical Society | 2011
Aaron M. Chockla; Justin T. Harris; Vahid A. Akhavan; Timothy D. Bogart; Vincent C. Holmberg; Chet Steinhagen; C. Buddie Mullins; Keith J. Stevenson; Brian A. Korgel
A nonwoven fabric with paperlike qualities composed of silicon nanowires is reported. The nanowires, made by the supercritical-fluid-liquid-solid process, are crystalline, range in diameter from 10 to 50 nm with an average length of >100 μm, and are coated with a thin chemisorbed polyphenylsilane shell. About 90% of the nanowire fabric volume is void space. Thermal annealing of the nanowire fabric in a reducing environment converts the polyphenylsilane coating to a carbonaceous layer that significantly increases the electrical conductivity of the material. This makes the nanowire fabric useful as a self-supporting, mechanically flexible, high-energy-storage anode material in a lithium ion battery. Anode capacities of more than 800 mA h g(-1) were achieved without the addition of conductive carbon or binder.
ACS Nano | 2014
Timothy D. Bogart; Daichi Oka; Xiaotang Lu; Meng Gu; Chongmin Wang; Brian A. Korgel
Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g(-1) for 100 cycles when cycled at C/10 and over 1200 mA h g(-1) when cycled more rapidly at 1C against Li metal. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.
ACS Nano | 2012
Julie N. L. Albert; Wen-Shiue Young; Ronald L. Lewis; Timothy D. Bogart; Jasmine R. Smith; Thomas H. Epps
Nanoscale self-assembly of block copolymer thin films has garnered significant research interest for nanotemplate design and membrane applications. To fulfill these roles, control of thin film morphology and orientation is critical. Solvent vapor annealing (SVA) treatments can be used to kinetically trap morphologies in thin films not achievable by traditional thermal treatments, but many variables affect the outcome of SVA, including solvent choice, total solvent concentration/swollen film thickness, and solvent removal rate. In this work, we systematically examined the effect of solvent removal rate on the final thin film morphology of a cylinder-forming ABA triblock copolymer. By kinetically trapping the film morphologies at key points during the solvent removal process and then using successive ultraviolet ozone (UVO) etching steps followed by atomic force microscopy (AFM) imaging to examine the through-film morphologies of the films, we determined that the mechanism for cylinder reorientation from substrate-parallel to substrate-perpendicular involved the propagation of changes at the free surface through the film toward the substrate as a front. The degree of reorientation increased with successively slower solvent removal rates. Furthermore, the AFM/UVO etching scheme permitted facile real-space analysis of the thin film internal structure in comparison to cross-sectional transmission electron microscopy.
Nano Letters | 2011
Julie N. L. Albert; Timothy D. Bogart; Ronald L. Lewis; Kathryn L. Beers; Michael J. Fasolka; J. Brian Hutchison; Bryan D. Vogt; Thomas H. Epps
Solvent vapor annealing (SVA) with solvent mixtures is a promising approach for controlling block copolymer thin film self-assembly. In this work, we present the design and fabrication of a solvent-resistant microfluidic mixing device to produce discrete SVA gradients in solvent composition and/or total solvent concentration. Using this device, we identified solvent composition dependent morphology transformations in poly(styrene-b-isoprene-b-styrene) films. This device enables faster and more robust exploration of SVA parameter space, providing insight into self-assembly phenomena.
Langmuir | 2013
Yixuan Yu; Colin M. Hessel; Timothy D. Bogart; Matthew G. Panthani; Michael R. Rasch; Brian A. Korgel
H-terminated Si nanocrystals undergo room temperature hydrosilylation with bifunctional alkenes with distal polar moieties-ethyl ester, methyl ester, or carboxylic acids-without the aid of light or added catalyst. The passivated Si nanocrystals exhibit bright photoluminescence (PL) and disperse in polar solvents, including water. We propose a reaction mechanism in which ester or carboxylic acid groups facilitate direct nucleophilic attack of the highly curved Si surface of the nanocrystals by the alkene.
Nano Letters | 2013
Xiaotang Lu; Colin M. Hessel; Yixuan Yu; Timothy D. Bogart; Brian A. Korgel
Silicon nanorods are grown by trisilane decomposition in hot squalane in the presence of tin (Sn) nanocrystals and dodecylamine. Sn induces solution-liquid-solid nanorod growth with dodecylamine serving as a stabilizing ligand. As-prepared nanorods do not luminesce, but etching with hydrofluoric acid to remove residual surface oxide followed by thermal hydrosilylation with 1-octadecene induces bright photoluminescence with quantum yields of 4-5%. X-ray photoelectron spectroscopy shows that the ligands prevent surface oxidation for months when stored in air.
ACS Applied Materials & Interfaces | 2013
Taylor B. Harvey; Isao Mori; C. Jackson Stolle; Timothy D. Bogart; David P. Ostrowski; Micah S. Glaz; Jiang Du; Douglas R. Pernik; Vahid A. Akhavan; Hady Kesrouani; David A. Vanden Bout; Brian A. Korgel
The power conversion efficiency of photovoltaic devices made with ink-deposited Cu(InxGa1-x)Se2 (CIGS) nanocrystal layers can be enhanced by sintering the nanocrystals with a high temperature selenization process. This process, however, can be challenging to control. Here, we report that ink deposition followed by annealing under inert gas and then selenization can provide better control over CIGS nanocrystal sintering and yield generally improved device efficiency. Annealing under argon at 525 °C removes organic ligands and diffuses sodium from the underlying soda lime glass into the Mo back contact to improve the rate and quality of nanocrystal sintering during selenization at 500 °C. Shorter selenization time alleviates excessive MoSe2 formation at the Mo back contact that leads to film delamination, which in turn enables multiple cycles of nanocrystal deposition and selenization to create thicker, more uniform absorber films. Devices with power conversion efficiency greater than 7% are fabricated using the multiple step nanocrystal deposition and sintering process.
RSC Advances | 2014
Timothy D. Bogart; Xiaotang Lu; Meng Gu; Chongmin Wang; Brian A. Korgel
Silicon (Si) has a very high lithium storage capacity and is being explored as a negative electrode material in lithium-ion batteries (LIBs). Si nanowires can exhibit relatively stable performance for many cycles of charging; however, conductive carbon must often be added to the electrode layer to improve the rate capability due to the relatively low electrical conductivity of Si. The added carbon lowers the capacity of the electrode. Here, we show that the rate capability of Si in LIBs can be substantially enhanced by incorporating tin (Sn) into Si nanowires. The solubility of Sn in Si is very low (0.015 at%); yet, Sn used as a seed for supercritical fluid–liquid–solid (SFLS) growth can be trapped in Si nanowires with relatively high concentration (10 at%). Such Sn-containing Si nanowires and no added conductive carbon in the electrode layer, could be cycled in LIBs with high capacity (∼1000 mA h g−1 over 100 cycles) at a current density of 2.8 A g−1 (1 C). Capacities exceeding that of graphite could still be reached at cycle rates as high as 2 C. Real-time in situ transmission electron microscopy (TEM) revealed that lithiation occurs five times faster in Si nanowires with significant amounts of Sn than in the Si nanowires without Sn, and twice as fast as in nanowires that were coated with carbon.
Journal of Physical Chemistry C | 2012
Aaron M. Chockla; Matthew G. Panthani; Vincent C. Holmberg; Colin M. Hessel; Dariya K. Reid; Timothy D. Bogart; Justin T. Harris; C. Buddie Mullins; Brian A. Korgel
Journal of Physical Chemistry C | 2012
Aaron M. Chockla; Timothy D. Bogart; Colin M. Hessel; Kyle C. Klavetter; C. Buddie Mullins; Brian A. Korgel