Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy D. Folsom is active.

Publication


Featured researches published by Timothy D. Folsom.


Schizophrenia Bulletin | 2009

The Neurodevelopmental Hypothesis of Schizophrenia, Revisited

S. Hossein Fatemi; Timothy D. Folsom

While multiple theories have been put forth regarding the origin of schizophrenia, by far the vast majority of evidence points to the neurodevelopmental model in which developmental insults as early as late first or early second trimester lead to the activation of pathologic neural circuits during adolescence or young adulthood leading to the emergence of positive or negative symptoms. In this report, we examine the evidence from brain pathology (enlargement of the cerebroventricular system, changes in gray and white matters, and abnormal laminar organization), genetics (changes in the normal expression of proteins that are involved in early migration of neurons and glia, cell proliferation, axonal outgrowth, synaptogenesis, and apoptosis), environmental factors (increased frequency of obstetric complications and increased rates of schizophrenic births due to prenatal viral or bacterial infections), and gene-environmental interactions (a disproportionate number of schizophrenia candidate genes are regulated by hypoxia, microdeletions and microduplications, the overrepresentation of pathogen-related genes among schizophrenia candidate genes) in support of the neurodevelopmental model. We relate the neurodevelopmental model to a number of findings about schizophrenia. Finally, we also examine alternate explanations of the origin of schizophrenia including the neurodegenerative model.


Journal of Autism and Developmental Disorders | 2009

GABAA receptor downregulation in brains of subjects with autism

S. Hossein Fatemi; Teri J. Reutiman; Timothy D. Folsom; Paul Thuras

Gamma-aminobutyric acid A (GABAA) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the expression of four GABAA receptor subunits and observed significant reductions in GABRA1, GABRA2, GABRA3, and GABRB3 in parietal cortex (Brodmann’s Area 40 (BA40)), while GABRA1 and GABRB3 were significantly altered in cerebellum, and GABRA1 was significantly altered in superior frontal cortex (BA9). The presence of seizure disorder did not have a significant impact on GABAA receptor subunit expression in the three brain areas. Our results demonstrate that GABAA receptors are reduced in three brain regions that have previously been implicated in the pathogenesis of autism, suggesting widespread GABAergic dysfunction in the brains of subjects with autism.


Schizophrenia Research | 2008

Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: implications for genesis of neurodevelopmental disorders.

S. Hossein Fatemi; Teri J. Reutiman; Timothy D. Folsom; Hao Huang; Kenichi Oishi; Susumu Mori; Donald F. Smee; David A. Pearce; Christine Winter; Reinhard Sohr; Georg Juckel

Prenatal viral infection has been associated with development of schizophrenia and autism. Our laboratory has previously shown that viral infection causes deleterious effects on brain structure and function in mouse offspring following late first trimester (E9) administration of influenza virus. We hypothesized that late second trimester infection (E18) in mice may lead to a different pattern of brain gene expression and structural defects in the developing offspring. C57BL6J mice were infected on E18 with a sublethal dose of human influenza virus or sham-infected using vehicle solution. Male offsping of the infected mice were collected at P0, P14, P35 and P56, their brains removed and prefrontal cortex, hippocampus and cerebellum dissected and flash frozen. Microarray, qRT-PCR, DTI and MRI scanning, western blotting and neurochemical analysis were performed to detect differences in gene expression and brain atrophy. Expression of several genes associated with schizophrenia or autism including Sema3a, Trfr2 and Vldlr were found to be altered as were protein levels of Foxp2. E18 infection of C57BL6J mice with a sublethal dose of human influenza virus led to significant gene alterations in frontal, hippocampal and cerebellar cortices of developing mouse progeny. Brain imaging revealed significant atrophy in several brain areas and white matter thinning in corpus callosum. Finally, neurochemical analysis revealed significantly altered levels of serotonin (P14, P35), 5-Hydroxyindoleacetic acid (P14) and taurine (P35). We propose that maternal infection in mouse provides an heuristic animal model for studying the environmental contributions to genesis of schizophrenia and autism, two important examples of neurodevelopmental disorders.


The Cerebellum | 2009

Expression of GABAB receptors is altered in brains of subjects with autism

S. Hossein Fatemi; Timothy D. Folsom; Teri J. Reutiman; Paul Thuras

Autism is a neurodevelopmental disorder that is often comorbid with seizures. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in brain. GABAB receptors play an important role in maintaining excitatory–inhibitory balance in brain and alterations may lead to seizures. We compared levels of GABAB receptor subunits GABAB receptor 1 (GABBR1) and GABAB receptor 2 (GABBR2) in cerebellum, Brodmann’s area 9 (BA9), and BA40 of subjects with autism and matched controls. Levels of GABBR1 were significantly decreased in BA9, BA40, and cerebellum, while GABBR2 was significantly reduced in the cerebellum. The presence of seizure disorder did not have a significant impact on the observed reductions in GABAB receptor subunit expression. Decreases in GABAB receptor subunits may help explain the presence of seizures that are often comorbid with autism, as well as cognitive difficulties prevalent in autism.


Journal of Autism and Developmental Disorders | 2010

mRNA and Protein Levels for GABAAα4, α5, β1 and GABABR1 Receptors are Altered in Brains From Subjects With Autism

S. Hossein Fatemi; Teri J. Reutiman; Timothy D. Folsom; Robert J. Rooney; Divyen H. Patel; Paul Thuras

We have shown altered expression of gamma-aminobutyric acid A (GABAA) and gamma-aminobutyric acid B (GABAB) receptors in the brains of subjects with autism. In the current study, we sought to verify our western blotting data for GABBR1 via qRT-PCR and to expand our previous work to measure mRNA and protein levels of 3 GABAA subunits previously associated with autism (GABRα4; GABRα5; GABRβ1). Three GABA receptor subunits demonstrated mRNA and protein level concordance in superior frontal cortex (GABRα4, GABRα5, GABRβ1) and one demonstrated concordance in cerebellum (GABΒR1). These results provide further evidence of impairment of GABAergic signaling in autism.


Schizophrenia Research | 2008

PDE4B polymorphisms and decreased PDE4B expression are associated with schizophrenia.

S. Hossein Fatemi; David P. King; Teri J. Reutiman; Timothy D. Folsom; Jessica A. Laurence; Susanne Lee; Yu Ti Fan; Sara A. Paciga; Marco Conti; Frank S. Menniti

Schizophrenia has a complex genetic underpinning and variations in a number of candidate genes have been identified that confer risk of developing the disorder. We report in the present studies that several single nucleotide polymorphisms (SNPs) and a two-SNP haplotype in PDE4B are associated with an increased incidence of schizophrenia in two large populations of Caucasian and African American patients. The SNPs in PDE4B associated with schizophrenia occur in intronic sequences in the vicinity of a critical splice junction that gives rise to the expression of PDE4B isoforms with distinct regulation and function. We also observed specific decreases in phosphodiesterase 4B (PDE4B) isoforms in brain tissue obtained postmortem from patients diagnosed with schizophrenia and bipolar disorder. PDE4B metabolically inactivates the second messenger cAMP to regulate intracellular signaling in neurons throughout the brain. Thus, the present observations suggest that dysregulation of intracellular signaling mediated by PDE4B is a significant factor in the cause and expression, respectively, of schizophrenia and bipolar disorder and that targeting PDE4B-regulated signaling pathways may yield new therapies to treat the totality of these disorders.


Synapse | 2008

Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism.

S. Hossein Fatemi; Timothy D. Folsom; Teri J. Reutiman; Susanne Lee

Neuroanatomical studies have revealed extensive structural brain abnormalities in subjects with autism. Recently, studies have provided evidence of neuroglial responses and neuroinflammation in autism. The current study investigated whether two astrocytic markers, aquaporin 4 and connexin 43, are altered in brains from subjects with autism. Postmortem brain tissues from Brodmanns Area 40 (BA40, parietal cortex), Brodmanns Area 9 (BA9, superior frontal cortex), and cerebella of subjects with autism and matched controls were subject to SDS‐PAGE and western blotting. Connexin 43 expression was increased significantly in BA9. Aquaporin 4 expression was decreased significantly in cerebellum. These data suggest that changes are apparent in markers for abnormal glial‐neuronal communication (connexin 43 and aquaporin 4) in brains of subjects with autism. Synapse 62:501–507, 2008.


Neuropsychopharmacology | 2006

Chronic Olanzapine Treatment Causes Differential Expression of Genes in Frontal Cortex of Rats as Revealed by DNA Microarray Technique

S. Hossein Fatemi; Teri J. Reutiman; Timothy D. Folsom; Christopher J. Bell; Lisa Nos; Peter Fried; David A. Pearce; Sushmita Singh; David P. Siderovski; Francis S. Willard; Mitsunori Fukuda

Recent emerging biochemical data indicate that several important neuroregulatory genes and proteins may be involved in the etiology of schizophrenia and bipolar disorder. Additionally, the same genes appear to be targets of several psychotropic medications that are used to treat these disorders. Recent DNA microarray studies show that genes involved in synaptic neurotransmission, signal transduction, and glutamate/GABA regulation may be differentially regulated in brains of subjects with schizophrenia. We hypothesized that chronic administration of olanzapine to rats would alter expression of various genes that may be involved in the etiology of schizophrenia and mood disorders. Rats were administered olanzapine (N=20, 2 mg/kg/day) or sterile saline intraperitoneally (N=20) daily for 21 days. Control and olanzapine-treated frontal cortices were analyzed using cDNA microarray technology. The results showed significant downregulation of 31 genes and upregulation of 38 genes by greater than two-fold in the drug-treated brains vs controls. Our results provide evidence for altered regulation of genes involved with signal transduction and cell communication, metabolism and energy pathways, transport, immune response, nucleic acid metabolism, and neuronal growth factors. Real-time quantitative RT-PCR analysis verified the direction and magnitude of change in six genes of interest: calbindin 3, homer 1, regulator of G-protein signaling (RGS) 2, pyruvate kinase, Reelin and insulin 2. Western blotting showed significant upregulation in protein products for Reelin 410 and Reelin 180 kDa and downregulation for NMDA3B and RGS2. Our results show for the first time that olanzapine causes changes in levels of several important genes that may be involved in the etiology and treatment of schizophrenia and other psychiatric disorders.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2011

Metabotropic Glutamate Receptor 5 Upregulation in Children with Autism is Associated with Underexpression of Both Fragile X Mental Retardation Protein and GABAA Receptor Beta 3 in Adults with Autism

S. Hossein Fatemi; Timothy D. Folsom; Rachel E. Kneeland; Stephanie B. Liesch

Recent work has demonstrated the impact of dysfunction of the GABAergic signaling system in brain and the resultant behavioral pathologies in subjects with autism. In animal models, altered expression of Fragile X mental retardation protein (FMRP) has been linked to downregulation of GABA receptors. Interestingly, the autistic phenotype is also observed in individuals with Fragile X syndrome. This study was undertaken to test previous theories relating abnormalities in levels of FMRP to GABAA receptor underexpression. We observed a significant reduction in levels of FMRP in the vermis of adults with autism. Additionally, we found that levels of metabotropic glutamate receptor 5 (mGluR5) protein were significantly increased in vermis of children with autism versus age and postmortem interval matched controls. There was also a significant decrease in level of GABAA receptor beta 3 (GABRβ3) protein in vermis of adult subjects with autism. Finally, we found significant increases in glial fibrillary acidic protein in vermis of both children and adults with autism when compared with controls. Taken together, our results provide further evidence that altered FMRP expression and increased mGluR5 protein production potentially lead to altered expression of GABAA receptors. Anat Rec,, 2011.


Schizophrenia Research | 2011

Deficits in GABAB receptor system in schizophrenia and mood disorders: A postmortem study

S. Hossein Fatemi; Timothy D. Folsom; Paul Thuras

Postmortem and genetic studies have clearly demonstrated changes in GABA(B) receptors in neuropsychiatric disorders such as autism, bipolar disorder, major depression, and schizophrenia. Moreover, a number of recent studies have stressed the importance of cerebellar dysfunction in these same disorders. In the current study, we examined protein levels of the two GABA(B) receptor subunits GABBR1 and GABBR2 in lateral cerebella from a well-characterized cohort of subjects with schizophrenia (n=15), bipolar disorder (n=14), major depression (n=13) and healthy controls (n=12). We found significant reductions in protein for both GABBR1 and GABBR2 in lateral cerebella from subjects with schizophrenia, bipolar disorder and major depression when compared with controls. These results provide further evidence of GABAergic dysfunction in these three disorders as well as identify potential targets for therapeutic intervention.

Collaboration


Dive into the Timothy D. Folsom's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Thuras

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susumu Mori

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Susanne Lee

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Hao Huang

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kenichi Oishi

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge