Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy E. Link is active.

Publication


Featured researches published by Timothy E. Link.


Hydrological Processes | 1998

The sensitivity of snowmelt processes to climate conditions and forest cover during rain-on-snow: a case study of the 1996 Pacific Northwest flood

Danny Marks; John S. Kimball; Dave Tingey; Timothy E. Link

A warm, very wet Pacific storm caused significant flooding in the Pacific Northwest during February 1996. Rapid melting of the mountain snow cover contributed to this flooding. An energy balance snowmelt model is used to simulate snowmelt processes during this event in the Central Cascade Mountains of Oregon. Data from paired open and forested experimental sites at locations at and just below the Pacific Crest were used to drive the model. The event was preceded by cold, stormy conditions that developed a significant snow cover down to elevations as low as 500 m in the Oregon Cascades. At the start of the storm, the depth of the snow cover at the high site (1142 m) was 1.97 m with a snow water equivalent (SWE) of 425 mm, while at the mid-site (968 m) the snow cover was 1.14 m with a SWE of 264 mm. During the 5‐6 day period of the storm the open high site received 349 mm of rain, lost 291 mm of SWE and generated 640 mm of runoA, leaving only 0.22 m of snow on the ground. The mid-site received 410 mm of rain, lost 264 mm of SWE to melt and generated 674 mm of runoA, completely depleting the snow cover. Simulations at adjacent forested sites showed significantly less snowmelt during the event. The snow cover under the mature forest at the high site lost only 44 mm of SWE during the event, generating 396 mm of runoA and leaving 0.69 m of snow. The model accurately simulated both snow cover depth and SWE during the development of the snow cover prior to the storm, and the depletion of the snow cover during the event. This analysis shows that because of the high temperature, humidity and relatively high winds in the open sites during the storm, 60‐90% of the energy for snowmelt came from sensible and latent heat exchanges. Because the antecedent conditions extended the snow cover to very low elevations in the basin, snowmelt generated by condensation during the event made a significant contribution to the flood. Lower wind speeds beneath the forest canopy during the storm reduced the magnitude of the turbulent exchanges at the snow surface, so the contribution of snowmelt to the runoA from forested areas was significantly less. This experiment shows the sensitivity of snowmelt processes to both climate and land cover, and illustrates how the forest canopy is coupled to the hydrological cycle in mountainous areas. #1998 John Wiley & Sons, Ltd.


Hydrological Processes | 1999

A spatially distributed energy balance snowmelt model for application in mountain basins

Danny Marks; James B. Domingo; Dave Susong; Timothy E. Link; David C. Garen

Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km 2 , with simulation periods varying from a few days for the smallest basin, Emerald Lake watershed in California, to multiple snow seasons for the Park City area in Utah. The model is driven by topographically corrected estimates of radiation, temperature, humidity, wind, and precipitation. Simulation results in all basins closely match independently measured snow water equivalent, snow depth, or runoA during both the development and depletion of the snowcover. Spatially distributed estimates of snow deposition and melt allow us to better understand the interaction between topographic structure, climate, and moisture availability in mountain basins of the western US. Application of topographically distributed models such as this will lead to improved water resource and watershed management. Copyright # 1999 John Wiley & Sons, Ltd.


Journal of Geophysical Research | 1999

Point simulation of seasonal snow cover dynamics beneath boreal forest canopies

Timothy E. Link; Danny Marks

The accurate simulation of snowpack deposition and ablation beneath forested areas is complicated by the fact that the vegetation canopy strongly affects the snow surface energy balance. Data collected as part of the Boreal Ecosystem-Atmosphere Study are used to derive a series of simple canopy adjustments and drive a two-layer coupled energy- and mass-balance snowmelt model to simulate the deposition and ablation of the seasonal snowpack at six sites within the boreal forest for the 1994-1995 snow season. Snow cover energy gain in the spring is strongly controlled by canopy cover and is dominated by net radiation fluxes which contribute from 66% to 92% of the snow cover energy balance. Turbulent fluxes comprise 11% of the net energy balance on average, with minor contributions from soil and advected energy fluxes. Simulated depths at the forested sites generally show good agreement with measured snow depths, indicated by model efficiencies ranging from 0.90 to 0.94, with root-mean-square differences less than 5 cm. Seasonal snow covers in the boreal environment may be more sensitive to land use transitions, rather than climate shifts, due to the strong control exerted by vegetation canopies on radiation transfer processes.


Hydrological Processes | 1999

Distributed simulation of snowcover mass- and energy-balance in the boreal forest

Timothy E. Link; Danny Marks

The accurate distributed simulation of snowpack deposition and ablation beneath forest canopies is complicated by the fact that vegetation canopies strongly aAect the snow surface energy balance. The canopy alters the radiation balance of the snowcover and reduces the wind speed at the snow surface. Simple canopy adjustment algorithms for solar and thermal radiation and wind speed are used in conjunction with commonly available land cover classifications to spatially distribute sub-canopy solar and thermal radiation, air and soil temperature, humidity, wind speed, and precipitation. The distributed climate surfaces are used to drive a twolayer coupled energy- and mass-balance snowmelt model over two areas within the BOREAS study region for the 1994‐1995 snow season. Model results are validated using both automatic and manually collected snow depth data. The simulated timing and rate of snowpack development and ablation at both study areas are well represented beneath the canopy types where validation data are present. Rigorous evaluation of model performance beneath the full range of canopy types requires information regarding the spatial distribution of snow covered area during the ablation period. This study demonstrates that given basic landcover parameters, relatively simple canopy adjustments coupled with an energy balance model can be used to estimate climate conditions and snowcover processes across a range of boreal forest covers. Copyright # 1999 John Wiley & Sons, Ltd.


Geophysical Research Letters | 2014

Extent of the rain‐snow transition zone in the western U.S. under historic and projected climate

P. Zion Klos; Timothy E. Link; John T. Abatzoglou

This study investigates the extent of the rain-snow transition zone across the complex terrain of the western United States for both late 20th century climate and projected changes in climate by the mid-21st century. Observed and projected temperature and precipitation data at 4 km resolution were used with an empirical probabilistic precipitation phase model to estimate and map the likelihood of snow versus rain occurrence. This approach identifies areas most likely to undergo precipitation phase change over the next half century. At broad scales, these projections indicate an average 30% decrease in areal extent of winter wet-day temperatures conducive to snowfall over the western United States. At higher resolution scales, this approach identifies existing and potential experimental sites best suited for research investigating the mechanisms linking precipitation phase change to a broad array of processes, such as shifts in rain-on-snow flood risk, timing of water resource availability, and ecosystem dynamics.


Annals of Glaciology | 2001

Simulating snowmelt processes during rain-on-snow over a semi-arid mountain basin

Danny Marks; Timothy E. Link; Adam Winstral; David C. Garen

Abstract In the Pacific Northwest of North America, significant flooding can occur during mid-winter rain-on-snow events. Warm, wet Pacific storms caused significant floods in the Pacific Northwest in February 1996, January 1997 and January 1998. Rapid melting of the mountain snow cover substantially augmented discharge during these flood events. An energy-balance snowmelt model is used to simulate snowmelt processes during the January 1997 event over a small headwater basin within the Reynolds Creek Experimental Watershed located in the Owyhee Mountains of southwestern Idaho, U.S.A. This sub-basin is 34% forested (12% fir, 22% aspen and 66% mixed sagebrush (primarily mountain big sagebrush)). Data from paired open and forested experimental sites were used to drive the model. Model-forcing data were corrected for topographic and vegetation canopy effects. The event was preceded by cold, stormy conditions that developed a significant snow cover over the sub-basin. The snow cover at sites protected by forest cover was slightly reduced, while at open sites significant snowmelt occurred. The warm, moist, windy conditions during the flooding event produced substantially higher melt rates in exposed areas, where sensible- and latent-heat exchanges contributed 60–90% of the energy for snowmelt. Simulated snow-cover development and ablation during the model run closely matched measured conditions at the two experimental sites. This experiment shows the sensitivity of snowmelt processes to both climate and land cover, and illustrates how the forest canopy is coupled to the hydrologic cycle in mountainous areas.


Journal of Hydrometeorology | 2008

Radiative Transfer Modeling of a Coniferous Canopy Characterized by Airborne Remote Sensing

Richard Essery; Peter Bunting; Aled Rowlands; Nick Rutter; Janet Hazel Hardy; Rae A. Melloh; Timothy E. Link; Danny Marks; John W. Pomeroy

Abstract Solar radiation beneath a forest canopy can have large spatial variations, but this is frequently neglected in radiative transfer models for large-scale applications. To explicitly model spatial variations in subcanopy radiation, maps of canopy structure are required. Aerial photography and airborne laser scanning are used to map tree locations, heights, and crown diameters for a lodgepole pine forest in Colorado as inputs to a spatially explicit radiative transfer model. Statistics of subcanopy radiation simulated by the model are compared with measurements from radiometer arrays, and scaling of spatial statistics with temporal averaging and array size is discussed. Efficient parameterizations for spatial averages and standard deviations of subcanopy radiation are developed using parameters that can be obtained from the model or hemispherical photography.


Journal of Hydrometeorology | 2008

Comparing Simulated and Measured Sensible and Latent Heat Fluxes over Snow under a Pine Canopy to Improve an Energy Balance Snowmelt Model

Daniel L. Marks; Adam Winstral; Gerald N. Flerchinger; Michele L. Reba; John W. Pomeroy; Timothy E. Link; Kelly Elder

Abstract During the second year of the NASA Cold Land Processes Experiment (CLPX), an eddy covariance (EC) system was deployed at the Local Scale Observation Site (LSOS) from mid-February to June 2003. The EC system was located beneath a uniform pine canopy, where the trees are regularly spaced and are of similar age and height. In an effort to evaluate the turbulent flux calculations of an energy balance snowmelt model (SNOBAL), modeled and EC-measured sensible and latent heat fluxes between the snow cover and the atmosphere during this period are presented and compared. Turbulent fluxes comprise a large component of the snow cover energy balance in the premelt and ripening period (March–early May) and therefore control the internal energy content of the snow cover as melt accelerates in late spring. Simulated snow cover depth closely matched measured values (RMS difference 8.3 cm; Nash–Sutcliff model efficiency 0.90), whereas simulated snow cover mass closely matched the few measured values taken during...


Rapid Communications in Mass Spectrometry | 2011

An inexpensive, fast, and reliable method for vacuum extraction of soil and plant water for stable isotope analyses by mass spectrometry

Paul Koeniger; John D. Marshall; Timothy E. Link; Andreas Mulch

The stable isotopes of water (hydrogen and oxygen isotopes) are of utmost interest in ecology and the geosciences. In many cases water has to be extracted directly from a matrix such as soil or plant tissue before isotopes can be analyzed by mass spectrometry. Currently, the most widely used technique for water is cryogenic vacuum extraction. We present a simple and inexpensive modification of this method and document tests conducted with soils of various grain size and tree core replicates taken on four occasions during 2010. The accuracies for sandy soils are between 0.4‰ and 3‰ over a range of 21‰ and 165‰ for δ(18)O and δ(2)H, respectively. Spiking tests with water of known isotope composition were conducted with soil and tree core samples; they indicate reliable precision after an extraction time of 15 min for sandy soils. For clayey soils and tree cores, the deviations were up to 0.63‰ and 4.7‰ for δ(18)O and δ(2)H, respectively. This indicates either that the extraction time should be extended or that mechanisms different from Rayleigh fractionation play a role. The modified protocol allows a fast and reliable extraction of large numbers of water samples from soil and plant material in preparation for stable isotope analyses.


Canadian Journal of Forest Research | 2011

Effects of needleleaf forest cover on radiation and snowmelt dynamics in the Canadian Rocky Mountains

C. R. Ellis; John W. Pomeroy; Richard Essery; Timothy E. Link

Radiation is the main energy source for snowpack warming and melt in mountain needleleaf forests, and runoff from these forests is the main contributor to spring river flows in western North America. Utilizing extensive field obser- vations, the effect of needleleaf forest cover on radiation and snowmelt timing was quantified at pine and spruce forest sites and nearby clearings of varying slope and aspect in an eastern Canadian Rocky Mountain headwater basin. Compared with open clearing sites, shortwave radiation was much reduced under forest cover, resulting in smaller differences in melt timing between forested slopes relative to open slopes with different aspects. In contrast, longwave radiation to snow was substantially enhanced under forest cover, especially at the dense spruce forest sites where longwave radiation dominated total energy for snowmelt. In both pine and spruce environments, forest cover acted to substantially reduce total radiation to snow and delay snowmelt timing on south-facing slopes while increasing total radiation and advancing snowmelt timing on north-facing slopes. Results strongly suggest that impacts on radiation to snow and snowmelt timing from changes in mountain forest cover will depend much on the slope and aspect at which changes occur.

Collaboration


Dive into the Timothy E. Link's collaboration.

Top Co-Authors

Avatar

Danny Marks

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

John W. Pomeroy

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Adam Winstral

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Michele L. Reba

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark S. Seyfried

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Gerald N. Flerchinger

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Marshall

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge