Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy H. Witney is active.

Publication


Featured researches published by Timothy H. Witney.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors.

Ferdia A. Gallagher; Mikko I. Kettunen; De-En Hu; Pernille Rose Jensen; René in ‘t Zandt; Magnus Karlsson; Anna Gisselsson; Sarah K. Nelson; Timothy H. Witney; Sarah E. Bohndiek; Georg Hansson; Torben Peitersen; Mathilde H. Lerche; Kevin M. Brindle

Dynamic nuclear polarization of 13C-labeled cell substrates has been shown to massively increase their sensitivity to detection in NMR experiments. The sensitivity gain is sufficiently large that if these polarized molecules are injected intravenously, their spatial distribution and subsequent conversion into other cell metabolites can be imaged. We have used this method to image the conversion of fumarate to malate in a murine lymphoma tumor in vivo after i.v. injection of hyperpolarized [1,4-13C2]fumarate. In isolated lymphoma cells, the rate of labeled malate production was unaffected by coadministration of succinate, which competes with fumarate for transport into the cell. There was, however, a correlation with the percentage of cells that had lost plasma membrane integrity, suggesting that the production of labeled malate from fumarate is a sensitive marker of cellular necrosis. Twenty-four hours after treating implanted lymphoma tumors with etoposide, at which point there were significant levels of tumor cell necrosis, there was a 2.4-fold increase in hyperpolarized [1,4-13C2]malate production compared with the untreated tumors. Therefore, the formation of hyperpolarized 13C-labeled malate from [1,4-13C2]fumarate appears to be a sensitive marker of tumor cell death in vivo and could be used to detect the early response of tumors to treatment. Given that fumarate is an endogenous molecule, this technique has the potential to be used clinically.


Journal of Biological Chemistry | 2011

Kinetic Modeling of Hyperpolarized 13C Label Exchange between Pyruvate and Lactate in Tumor Cells

Timothy H. Witney; Mikko I. Kettunen; Kevin M. Brindle

Measurements of the kinetics of hyperpolarized 13C label exchange between [1-13C]pyruvate and lactate in suspensions of intact and lysed murine lymphoma cells, and in cells in which lactate dehydrogenase expression had been modulated by inhibition of the PI3K pathway, were used to determine quantitatively the role of enzyme activity and membrane transport in controlling isotope flux. Both steps were shown to share in the control of isotope flux in these cells. The kinetics of label exchange were well described by a kinetic model that employed rate constants for the lactate dehydrogenase reaction that had been determined previously from steady state kinetic studies. The enzyme showed pyruvate inhibition in steady state kinetic measurements, which the kinetic model predicted should also be observed in the isotope exchange measurements. However, no such pyruvate inhibition was observed in either intact cells or cell lysates and this could be explained by the much higher enzyme concentrations present in the isotope exchange experiments. The kinetic analysis presented here shows how lactate dehydrogenase activity can be determined from the isotope exchange measurements. The kinetic model should be useful for modeling the exchange reaction in vivo, particularly as this technique progresses to the clinic.


British Journal of Cancer | 2010

Detecting treatment response in a model of human breast adenocarcinoma using hyperpolarised [1-13C]pyruvate and [1,4-13C2]fumarate

Timothy H. Witney; Mikko I. Kettunen; De-En Hu; Ferdia A. Gallagher; Sarah E. Bohndiek; Napolitano R; Kevin M. Brindle

Background:The recent introduction of a dynamic nuclear polarisation technique has permitted noninvasive imaging of tumour cell metabolism in vivo following intravenous administration of 13C-labelled cell substrates.Methods:Changes in hyperpolarised [1-13C]pyruvate and [1,4-13C2]fumarate metabolism were evaluated in both MDA-MB-231 cells and in implanted MDA-MB-231 tumours following doxorubicin treatment.Results:Treatment of MDA-MB-231 cells resulted in the induction of apoptosis, which was accompanied by a decrease in hyperpolarised 13C label flux between [1-13C]pyruvate and lactate, which was correlated with a decrease in the cellular NAD(H) coenzyme pool. There was also an increase in the rate of fumarate conversion to malate, which accompanied the onset of cellular necrosis. In vivo, the decrease in 13C label exchange between pyruvate and lactate and the increased flux between fumarate and malate, following drug treatment, were shown to occur in the absence of any detectable change in tumour size.Conclusion:We show here that the early responses of a human breast adenocarcinoma tumour model to drug treatment can be followed by administration of both hyperpolarised [1-13C]pyruvate and [1,4-13C2]fumarate. These techniques could be used, therefore, in the clinic to detect the early responses of breast tumours to treatment.


Magnetic Resonance in Medicine | 2010

Magnetization transfer measurements of exchange between hyperpolarized [1-13C]pyruvate and [1-13C]lactate in a murine lymphoma

Mikko I. Kettunen; De-En Hu; Timothy H. Witney; Rebekah McLaughlin; Ferdia A. Gallagher; Sarah E. Bohndiek; Sam E. Day; Kevin M. Brindle

Measurements of the conversion of hyperpolarized [1‐13C]pyruvate into lactate, in the reaction catalyzed by lactate dehydrogenase, have shown promise as a metabolic marker for the presence of disease and response to treatment. However, it is unclear whether this represents net flux of label from pyruvate to lactate or exchange of isotope between metabolites that are close to chemical equilibrium. Using saturation and inversion transfer experiments, we show that there is significant exchange of label between lactate and pyruvate in a murine lymphoma in vivo. The rate constants estimated from the magnetization transfer experiments, at specific points during the time course of label exchange, were similar to those obtained by fitting the changes in peak intensities during the entire exchange time course to a kinetic model for two‐site exchange. These magnetization transfer experiments may therefore provide an alternative and more rapid way of estimating flux between pyruvate and lactate to serial measurements of pyruvate and lactate 13C peak intensities following injection of hyperpolarized [1‐13C]pyruvate. Magn Reson Med 63:872–880, 2010.


Molecular Cancer Therapeutics | 2010

Detection of Tumor Response to a Vascular Disrupting Agent by Hyperpolarized 13C Magnetic Resonance Spectroscopy

Sarah E. Bohndiek; Mikko I. Kettunen; De-En Hu; Timothy H. Witney; Brett W. C. Kennedy; Ferdia A. Gallagher; Kevin M. Brindle

Nuclear spin hyperpolarization can dramatically increase the sensitivity of the 13C magnetic resonance experiment, allowing dynamic measurements of the metabolism of hyperpolarized 13C-labeled substrates in vivo. Here, we report a preclinical study of the response of lymphoma tumors to the vascular disrupting agent (VDA), combretastatin-A4-phosphate (CA4P), as detected by measuring changes in tumor metabolism of hyperpolarized [1-13C]pyruvate and [1,4-13C2]fumarate. These measurements were compared with dynamic contrast agent–enhanced magnetic resonance imaging (DCE-MRI) measurements of tumor vascular function and diffusion-weighted MRI (DW-MRI) measurements of the tumor cell necrosis that resulted from subsequent loss of tumor perfusion. The rate constant describing flux of hyperpolarized 13C label between [1-13C]pyruvate and lactate was decreased by 34% within 6 hours of CA4P treatment and remained at this lower level at 24 hours. The rate constant describing production of labeled malate from hyperpolarized [1,4-13C2]fumarate increased 1.6-fold and 2.5-fold at 6 and 24 hours after treatment, respectively, and correlated with the degree of necrosis detected in histologic sections. Although DCE-MRI measurements showed a substantial reduction in perfusion at 6 hours after treatment, which had recovered by 24 hours, DW-MRI showed no change in the apparent diffusion coefficient of tumor water at 6 hours after treatment, although there was a 32% increase at 24 hours (P < 0.02) when regions of extensive necrosis were observed by histology. Measurements of hyperpolarized [1-13C]pyruvate and [1,4-13C2]fumarate metabolism may provide, therefore, a more sustained and sensitive indicator of response to a VDA than DCE-MRI or DW-MRI, respectively. Mol Cancer Ther; 9(12); 3278–88. ©2010 AACR.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Magnetic resonance imaging with hyperpolarized [1,4-(13)C2]fumarate allows detection of early renal acute tubular necrosis.

Menna R. Clatworthy; Mikko I. Kettunen; De-En Hu; Rebeccah J Mathews; Timothy H. Witney; Brett W. C. Kennedy; Sarah E. Bohndiek; Ferdia A. Gallagher; Lorna B. Jarvis; Kenneth G. C. Smith; Kevin M. Brindle

Acute kidney injury (AKI) is a common and important medical problem, affecting 10% of hospitalized patients, and it is associated with significant morbidity and mortality. The most frequent cause of AKI is acute tubular necrosis (ATN). Current imaging techniques and biomarkers do not allow ATN to be reliably differentiated from important differential diagnoses, such as acute glomerulonephritis (GN). We investigated whether 13C magnetic resonance spectroscopic imaging (MRSI) might allow the noninvasive diagnosis of ATN. 13C MRSI of hyperpolarized [1,4-13C2]fumarate and pyruvate was used in murine models of ATN and acute GN (NZM2410 mice with lupus nephritis). A significant increase in [1,4-13C2]malate signal was identified in the kidneys of mice with ATN early in the disease course before the onset of severe histological changes. No such increase in renal [1,4-13C2]malate was observed in mice with acute GN. The kidney [1-13C]pyruvate/[1-13C]lactate ratio showed substantial variability and was not significantly decreased in animals with ATN or increased in animals with GN. In conclusion, MRSI of hyperpolarized [1,4-13C2]fumarate allows the detection of early tubular necrosis and its distinction from glomerular inflammation in murine models. This technique may have the potential to identify a window of therapeutic opportunity in which emerging therapies might be applied to patients with ATN, reducing the need for acute dialysis with its attendant morbidity and cost.


Clinical Cancer Research | 2012

Evaluation of deuterated 18F- and 11C-labeled choline analogs for cancer detection by positron emission tomography

Timothy H. Witney; Israt S. Alam; David R. Turton; Graham Smith; Laurence Carroll; Diana Brickute; Frazer Twyman; Quang-Dé Nguyen; Giampaolo Tomasi; Ramla O. Awais; Eric O. Aboagye

Purpose: 11C-Choline–positron emission tomography (PET) has been exploited to detect the aberrant choline metabolism in tumors. Radiolabeled choline uptake within the imaging time is primarily a function of transport, phosphorylation, and oxidation. Rapid choline oxidation, however, complicates interpretation of PET data. In this study, we investigated the biologic basis of the oxidation of deuterated choline analogs and assessed their specificity in human tumor xenografts. Experimental Design: 11C-Choline, 11C-methyl-[1,2-2H4]-choline (11C-D4-choline), and 18F-D4-choline were synthesized to permit comparison. Biodistribution, metabolism, small-animal PET studies, and kinetic analysis of tracer uptake were carried out in human colon HCT116 xenograft–bearing mice. Results: Oxidation of choline analogs to betaine was highest with 11C-choline, with reduced oxidation observed with 11C-D4-choline and substantially reduced with 18F-D4-choline, suggesting that both fluorination and deuteration were important for tracer metabolism. Although all tracers were converted intracellularly to labeled phosphocholine (specific signal), the higher rate constants for intracellular retention (Ki and k3) of 11C-choline and 11C-D4-choline, compared with 18F-D4-choline, were explained by the rapid conversion of the nonfluorinated tracers to betaine within HCT116 tumors. Imaging studies showed that the uptake of 18F-D4-choline in three tumors with similar radiotracer delivery (K1) and choline kinase α expression—HCT116, A375, and PC3-M—were the same, suggesting that 18F-D4-choline has utility for cancer detection irrespective of histologic type. Conclusion: We have shown here that both deuteration and fluorination combine to provide protection against choline oxidation in vivo. 18F-D4-choline showed the highest selectivity for phosphorylation and warrants clinical evaluation. Clin Cancer Res; 18(4); 1063–72. ©2012 AACR.


Bioconjugate Chemistry | 2010

Comparison of the C2A domain of synaptotagmin-I and annexin-V as probes for detecting cell death.

Israt S. Alam; André A. Neves; Timothy H. Witney; Joan Boren; Kevin M. Brindle

The induction of apoptosis is frequently accompanied by the exposure of phosphatidylserine (PS) on the cell surface, which has been detected using radionuclide and fluorescently labeled derivatives of the PS-binding protein, Annexin V. The fluorescently labeled protein has been used extensively in vitro as a diagnostic reagent for detecting cell death, and radionuclide-labeled derivatives have undergone clinical trials for detecting tumor cell death in vivo following treatment. We show here that the C2A domain of Synaptotagmin-I, which had been fluorescently labeled at a single cysteine residue introduced by site-directed mutagenesis, detected the same levels of cell death as a similarly labeled Annexin-V derivative, in drug-treated murine lymphoma and human breast cancer cell lines in vitro. However, the C2A derivative showed significantly less binding to viable cells and, as a consequence, up to 4-fold more specific binding to apoptotic and necrotic cells when compared with Annexin-V. C2A offers a potential route for the development of a new generation of more specific imaging probes for the detection of tumor cell death in the clinic.


Biochemical Society Transactions | 2010

Imaging tumour cell metabolism using hyperpolarized 13C magnetic resonance spectroscopy

Timothy H. Witney; Kevin M. Brindle

Patients with similar tumour types frequently show different responses to the same therapy. The development of new treatments would benefit, therefore, from imaging methods that allow an early assessment of treatment response in individual patients, allowing rapid selection of the most effective treatment. We have been using (13)C MRSI (magnetic resonance spectroscopic imaging) of tumour cell metabolism, using hyperpolarized (13)C-labelled cellular metabolites, to detect treatment response. Nuclear spin hyperpolarization can increase sensitivity in the magnetic resonance experiment >10,000 times, allowing us to image labelled cell substrates in vivo and their subsequent metabolism. We showed that exchange of hyperpolarized (13)C label between lactate and pyruvate, catalysed by lactate dehydrogenase, was decreased in treated tumours undergoing drug-induced cell death, and that tissue pH could be imaged from the ratio of the signal intensities of hyperpolarized H(13)CO(3)(-) and (13)CO(2) following intravenous injection of hyperpolarized H(13)CO(3). Tumour cell glutaminase activity, a potential measure of cell proliferation, can be determined using hyperpolarized [5-(13)C]glutamine, and treatment-induced tumour cell necrosis can be imaged in vivo from measurements of the conversion of hyperpolarized [1,4-(13)C(2)]fumarate into malate. Since these substrates are endogenous and, in some cases, have already been safely infused into patients, these techniques have the potential to translate to the clinic.


Cancer Research | 2014

A Novel Radiotracer to Image Glycogen Metabolism in Tumors by Positron Emission Tomography

Timothy H. Witney; Laurence Carroll; Israt S. Alam; Anil Chandrashekran; Quang-Dé Nguyen; Roberta Sala; Robert C. Harris; Ralph J. DeBerardinis; Roshan Agarwal; Eric O. Aboagye

The high rate of glucose uptake to fuel the bioenergetic and anabolic demands of proliferating cancer cells is well recognized and is exploited with (18)F-2-fluoro-2-deoxy-d-glucose positron emission tomography ((18)F-FDG-PET) to image tumors clinically. In contrast, enhanced glucose storage as glycogen (glycogenesis) in cancer is less well understood and the availability of a noninvasive method to image glycogen in vivo could provide important biologic insights. Here, we demonstrate that (18)F-N-(methyl-(2-fluoroethyl)-1H-[1,2,3]triazole-4-yl)glucosamine ((18)F-NFTG) annotates glycogenesis in cancer cells and tumors in vivo, measured by PET. Specificity of glycogen labeling was demonstrated by isolating (18)F-NFTG-associated glycogen and with stable knockdown of glycogen synthase 1, which inhibited (18)F-NFTG uptake, whereas oncogene (Rab25) activation-associated glycogen synthesis led to increased uptake. We further show that the rate of glycogenesis is cell-cycle regulated, enhanced during the nonproliferative state of cancer cells. We demonstrate that glycogen levels, (18)F-NFTG, but not (18)F-FDG uptake, increase proportionally with cell density and G1-G0 arrest, with potential application in the assessment of activation of oncogenic pathways related to glycogenesis and the detection of posttreatment tumor quiescence.

Collaboration


Dive into the Timothy H. Witney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

De-En Hu

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikko I. Kettunen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge