Timothy J. Knowles
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Timothy J. Knowles.
Nature Reviews Microbiology | 2009
Timothy J. Knowles; Anthony Scott-Tucker; Michael Overduin; Ian R. Henderson
The folding of transmembrane proteins into the outer membrane presents formidable challenges to Gram-negative bacteria. These proteins must migrate from the cytoplasm, through the inner membrane and into the periplasm, before being recognized by the β-barrel assembly machinery, which mediates efficient insertion of folded β-barrels into the outer membrane. Recent discoveries of component structures and accessory interactions of this complex are yielding insights into how cells fold membrane proteins. Here, we discuss how these structures illuminate the mechanisms responsible for the biogenesis of outer membrane proteins.
Journal of the American Chemical Society | 2009
Timothy J. Knowles; Rachael Finka; Corinne J. Smith; Yu-Pin Lin; Timothy R. Dafforn; Michael Overduin
One-third of eukaryotic proteins are integrated within membranes, as are the targets of 40% of approved drugs. However, the lack of a general means of solubilizing, stabilizing and structurally characterizing active membrane proteins has frustrated efforts to understand their mechanisms and exploit their potential value. Here we report that bilayer disks formed by phospholipids and styrene maleic anhydride copolymer preserve the functional and structural integrity of alpha-helical and beta-barrel transmembrane proteins. They form 11 nm particles that are monodispersed, biocompatible, thermostable, and water-soluble, allowing diverse membrane proteins to be simply and rapidly presented for virtually any in vitro analysis.
Molecular Microbiology | 2008
Timothy J. Knowles; Mark Jeeves; Saeeda Bobat; Felician Dancea; Darren M. McClelland; Tracy Palmer; Michael Overduin; Ian R. Henderson
Membranes of Gram‐negative bacteria, mitochondria and chloroplasts receive and fold β‐barrel transmembrane proteins through the action of polypeptide transport‐associated (POTRA) domains. In Escherichia coli, folding substrates are inserted into the outer membrane by the essential protein YaeT, a prototypic Omp85 protein. Here, the articulation between tandem POTRA domains in solution is defined by nuclear magnetic resonance (NMR) spectroscopy, indicating an unprecedented juxtaposition. The novel solution orientations of all five POTRA domains are revealed by small‐angle X‐ray scattering of the entire 46u2003kDa periplasmic region. NMR titration studies show that strands from YaeTs canonical folding substrate, PhoE, bind non‐specifically along alternating sides of its mixed β sheets, thus providing an ideal platform for helping to fold nascent outer‐membrane proteins. Together, this provides the first structural model of how multiple POTRA domains recruit substrates from the periplasmic solution into the outer membrane.
EMBO Reports | 2011
Timothy J. Knowles; Douglas F. Browning; Mark Jeeves; Riyaz Maderbocus; Sandya Rajesh; Pooja Sridhar; Eleni Manoli; Danielle Emery; Ulf Sommer; Ashley Spencer; Denisse L. Leyton; Derrick J. P. Squire; Roy R. Chaudhuri; Mark R. Viant; Adam F. Cunningham; Ian R. Henderson; Michael Overduin
Insertion of folded proteins into the outer membrane of Gram‐negative bacteria is mediated by the essential β‐barrel assembly machine (Bam). Here, we report the native structure and mechanism of a core component of this complex, BamE, and show that it is exclusively monomeric in its native environment of the periplasm, but is able to adopt a distinct dimeric conformation in the cytoplasm. BamE is shown to bind specifically to phosphatidylglycerol, and comprehensive mutagenesis and interaction studies have mapped key determinants for complex binding, outer membrane integrity and cell viability, as well as revealing the role of BamE within the Bam complex.
Biochemical Journal | 2014
Sonali Gulati; Mohammed Jamshad; Timothy J. Knowles; Kerrie A. Morrison; Rebecca Downing; Natasha Cant; Richard F. Collins; Jan B. Koenderink; Robert C. Ford; Michael Overduin; Ian D. Kerr; Timothy R. Dafforn; Alice Rothnie
ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up a wide range of possibilities for the future study of their structure and function.
Nano Research | 2015
Mohammed Jamshad; Vinciane Grimard; Ilaria Idini; Timothy J. Knowles; Miriam Dowle; Naomi Schofield; Pooja Sridhar; Yu-Pin Lin; Rachael Finka; Mark Wheatley; Owen R.T. Thomas; Richard E. Palmer; Michael Overduin; Cédric Govaerts; Jean Marie Ruysschaert; Karen J. Edler; Timothy R. Dafforn
In the past few years there has been a growth in the use of nanoparticles for stabilizing lipid membranes that contain embedded proteins. These bionanoparticles provide a solution to the challenging problem of membrane protein isolation by maintaining a lipid bilayer essential to protein integrity and activity. We have previously described the use of an amphipathic polymer (poly(styrene-co-maleic acid), SMA) to produce discoidal nanoparticles with a lipid bilayer core containing the embedded protein. However the structure of the nanoparticle itself has not yet been determined. This leaves a major gap in understanding how the SMA stabilizes the encapsulated bilayer and how the bilayer relates physically and structurally to an unencapsulated lipid bilayer. In this paper we address this issue by describing the structure of the SMA lipid particle (SMALP) using data from small angle neutron scattering (SANS), electron microscopy (EM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (NMR). We show that the particle is disc shaped containing a polymer “bracelet” encircling the lipid bilayer. The structure and orientation of the individual components within the bilayer and polymer are determined showing that styrene moieties within SMA intercalate between the lipid acyl chains. The dimensions of the encapsulated bilayer are also determined and match those measured for a natural membrane. Taken together, the description of the structure of the SMALP forms the foundation for future development and applications of SMALPs in membrane protein production and analysis.
Biochemical Society Transactions | 2011
Mohammed Jamshad; Yu-Pin Lin; Timothy J. Knowles; Rosemary A. Parslow; Craig Harris; Mark Wheatley; David R. Poyner; Roslyn M. Bill; Owen R.T. Thomas; Michael Overduin; Timothy R. Dafforn
In order to study the structure and function of a protein, it is generally required that the protein in question is purified away from all others. For soluble proteins, this process is greatly aided by the lack of any restriction on the free and independent diffusion of individual protein particles in three dimensions. This is not the case for membrane proteins, as the membrane itself forms a continuum that joins the proteins within the membrane with one another. It is therefore essential that the membrane is disrupted in order to allow separation and hence purification of membrane proteins. In the present review, we examine recent advances in the methods employed to separate membrane proteins before purification. These approaches move away from solubilization methods based on the use of small surfactants, which have been shown to suffer from significant practical problems. Instead, the present review focuses on methods that stem from the field of nanotechnology and use a range of reagents that fragment the membrane into nanometre-scale particles containing the protein complete with the local membrane environment. In particular, we examine a method employing the amphipathic polymer poly(styrene-co-maleic acid), which is able to reversibly encapsulate the membrane protein in a 10xa0nm disc-like structure ideally suited to purification and further biochemical study.
Journal of Bacteriology | 2011
Amanda E. Rossiter; Denisse L. Leyton; Karina Tveen-Jensen; Douglas F. Browning; Yanina R. Sevastsyanovich; Timothy J. Knowles; Katie B. Nichols; Adam F. Cunningham; Michael Overduin; Mark A. Schembri; Ian R. Henderson
Autotransporter biogenesis is dependent upon BamA, a central component of the β-barrel assembly machinery (BAM) complex. In this report, we detail the role of the other BAM components (BamB-E). We identify the importance of BamD in autotransporter biogenesis and show that BamB, BamC, and BamE are not required.
Bioscience Reports | 2015
Mohammed Jamshad; Jack Charlton; Yu-Pin Lin; Sarah J. Routledge; Zharain Bawa; Timothy J. Knowles; Michael Overduin; Niek Dekker; Timothy R. Dafforn; Roslyn M. Bill; David R. Poyner; Mark Wheatley
G-protein coupled receptors (GPCRs) constitute the largest class of membrane proteins and are a major drug target. A serious obstacle to studying GPCR structure/function characteristics is the requirement to extract the receptors from their native environment in the plasma membrane, coupled with the inherent instability of GPCRs in the detergents required for their solubilization. In the present study, we report the first solubilization and purification of a functional GPCR [human adenosine A2A receptor (A2AR)], in the total absence of detergent at any stage, by exploiting spontaneous encapsulation by styrene maleic acid (SMA) co-polymer direct from the membrane into a nanoscale SMA lipid particle (SMALP). Furthermore, the A2AR–SMALP, generated from yeast (Pichia pastoris) or mammalian cells, exhibited increased thermostability (∼5°C) compared with detergent [DDM (n-dodecyl-β-D-maltopyranoside)]-solubilized A2AR controls. The A2AR–SMALP was also stable when stored for prolonged periods at 4°C and was resistant to multiple freeze-thaw cycles, in marked contrast with the detergent-solubilized receptor. These properties establish the potential for using GPCR–SMALP in receptor-based drug discovery assays. Moreover, in contrast with nanodiscs stabilized by scaffold proteins, the non-proteinaceous nature of the SMA polymer allowed unobscured biophysical characterization of the embedded receptor. Consequently, CD spectroscopy was used to relate changes in secondary structure to loss of ligand binding ([3H]ZM241385) capability. SMALP-solubilization of GPCRs, retaining the annular lipid environment, will enable a wide range of therapeutic targets to be prepared in native-like state to aid drug discovery and understanding of GPCR molecular mechanisms.
New Biotechnology | 2011
Sundaresan Rajesh; Timothy J. Knowles; Michael Overduin
The production of membrane proteins in cellular systems is besieged by several problems due to their hydrophobic nature which often causes misfolding, protein aggregation and cytotoxicity, resulting in poor yields of stable proteins. Cell-free expression has emerged as one of the most versatile alternatives for circumventing these obstacles by producing membrane proteins directly into designed hydrophobic environments. Efficient optimisation of expression and solubilisation conditions using a variety of detergents, membrane mimetics and lipids has yielded structurally and functionally intact membrane proteins, with yields several fold above the levels possible from cell-based systems. Here we review recently developed techniques available to produce functional membrane proteins, and discuss amphipols, nanodisc and styrene maleic acid lipid particle (SMALP) technologies that can be exploited alongside cell-free expression of membrane proteins.