Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy J. Lansing is active.

Publication


Featured researches published by Timothy J. Lansing.


Journal of Biological Chemistry | 1996

Role of c-Src Tyrosine Kinase in G Protein-coupled Receptorand Gβγ Subunit-mediated Activation of Mitogen-activated Protein Kinases

Louis M. Luttrell; Brian E. Hawes; Tim van Biesen; Deirdre K. Luttrell; Timothy J. Lansing; Robert J. Lefkowitz

Several G protein-coupled receptors that interact with pertussis toxin-sensitive heterotrimeric G proteins mediate Ras-dependent activation of mitogen-activated protein (MAP) kinases. The mechanism involves Gβγ subunit-mediated increases in tyrosine phosphorylation of the Shc adapter protein, Shc·Grb2 complex formation, and recruitment of Ras guanine nucleotide exchange factor activity. We have investigated the role of the ubiquitous nonreceptor tyrosine kinase c-Src in activation of the MAP kinase pathway via endogenous G protein-coupled lysophosphatidic acid (LPA) receptors or by transient expression of Gβγ subunits in COS-7 cells. In vitro kinase assays of Shc immunoprecipitates following LPA stimulation demonstrated rapid, transient recruitment of tyrosine kinase activity into Shc immune complexes. Recruitment of tyrosine kinase activity was pertussis toxin-sensitive and mimicked by cellular expression of Gβγ subunits. Immunoblots for coprecipitated proteins in Shc immunoprecipitates revealed a transient association of Shc and c-Src following LPA stimulation, which coincided with increases in Shc-associated tyrosine kinase activity and Shc tyrosine phosphorylation. LPA stimulation or expression of Gβγ subunits resulted in c-Src activation, as assessed by increased c-Src autophosphorylation. Overexpression of wild-type or constitutively active mutant c-Src, but not kinase inactive mutant c-Src, lead to increased tyrosine kinase activity in Shc immunoprecipitates, increased Shc tyrosine phosphorylation, and Shc·Grb2 complex formation. MAP kinase activation resulting from LPA receptor stimulation, expression of Gβγ subunits, or expression of c-Src was sensitive to dominant negatives of mSos, Ras, and Raf. Coexpression of Csk, which inactivates Src family kinases by phosphorylating the regulatory C-terminal tyrosine residue, inhibited LPA stimulation of Shc tyrosine phosphorylation, Shc·Grb2 complex formation, and MAP kinase activation. These data suggest that Gβγ subunit-mediated formation of Shc·c-Src complexes and c-Src kinase activation are early events in Ras-dependent activation of MAP kinase via pertussis toxin-sensitive G protein-coupled receptors.


Cancer Research | 2008

Characterization of an Akt Kinase Inhibitor with Potent Pharmacodynamic and Antitumor Activity

Nelson Rhodes; Dirk A. Heerding; Derek R. Duckett; Derek J. Eberwein; Victoria B. Knick; Timothy J. Lansing; Randy T. McConnell; Tona M. Gilmer; Shu-Yun Zhang; Kimberly Robell; Jason Kahana; Robert S. Geske; Elena Kleymenova; Anthony E. Choudhry; Zhihong Lai; Jack D. Leber; Elisabeth A. Minthorn; Susan L. Strum; Edgar R. Wood; Pearl S. Huang; Robert A. Copeland; Rakesh Kumar

Akt kinases 1, 2, and 3 are important regulators of cell survival and have been shown to be constitutively active in a variety of human tumors. GSK690693 is a novel ATP-competitive, low-nanomolar pan-Akt kinase inhibitor. It is selective for the Akt isoforms versus the majority of kinases in other families; however, it does inhibit additional members of the AGC kinase family. It causes dose-dependent reductions in the phosphorylation state of multiple proteins downstream of Akt, including GSK3 beta, PRAS40, and Forkhead. GSK690693 inhibited proliferation and induced apoptosis in a subset of tumor cells with potency consistent with intracellular inhibition of Akt kinase activity. In immune-compromised mice implanted with human BT474 breast carcinoma xenografts, a single i.p. administration of GSK690693 inhibited GSK3 beta phosphorylation in a dose- and time-dependent manner. After a single dose of GSK690693, >3 micromol/L drug concentration in BT474 tumor xenografts correlated with a sustained decrease in GSK3 beta phosphorylation. Consistent with the role of Akt in insulin signaling, treatment with GSK690693 resulted in acute and transient increases in blood glucose level. Daily administration of GSK690693 produced significant antitumor activity in mice bearing established human SKOV-3 ovarian, LNCaP prostate, and BT474 and HCC-1954 breast carcinoma xenografts. Immunohistochemical analysis of tumor xenografts after repeat dosing with GSK690693 showed reductions in phosphorylated Akt substrates in vivo. These results support further evaluation of GSK690693 as an anticancer agent.


Molecular Cancer Therapeutics | 2007

In vitro biological activity of a novel small-molecule inhibitor of polo-like kinase 1

Timothy J. Lansing; Randy T. McConnell; Derek R. Duckett; Glenn M. Spehar; Victoria B. Knick; Daniel F. Hassler; Nobuhiro Noro; Masaaki Furuta; Kyle Allen Emmitte; Tona M. Gilmer; Robert A. Mook; Mui Cheung

Polo-like kinase 1 (PLK1) plays key roles in the regulation of mitotic progression, including mitotic entry, spindle formation, chromosome segregation, and cytokinesis. PLK1 expression and activity are strongly linked to proliferating cells. Many studies have shown that PLK1 expression is elevated in a variety of tumors, and high expression often correlates with poor prognosis. Using a variety of methods, including small-molecule inhibition of PLK1 function and/or activity, apoptosis in cancer cell lines, cell cycle arrest in normal cell lines, and antitumor activity in vivo have been observed. In the present study, we have examined the in vitro biological activity of a novel and selective thiophene benzimidazole ATP-competitive inhibitor of PLK1 and PLK3 (5-(5,6-dimethoxy-1H-benzimidazol-1-yl)-3-{[2-(trifluoromethyl)-benzyl]oxy}thiophene-2-carboxamide, called compound 1). Compound 1 has low nanomolar activity against the PLK1 and PLK3 enzymes and potently inhibits the proliferation of a wide variety of tumor cell lines. In the lung adenocarcinoma cell line NCI-H460, compound 1 induces a transient G2-M arrest, mitotic spindle defects, and a multinucleate phenotype resulting in apoptosis, whereas normal human diploid fibroblasts arrest in G2-M and show little apoptosis. We also describe a cellular mechanistic assay that was developed to identify potent intracellular inhibitors of PLK1. In addition to its potential as a therapeutic agent for treating cancer, compound 1 is also a useful tool molecule for further investigation of the biological functions of PLK1 and PLK3. [Mol Cancer Ther 2007;6(2):450–9]


Journal of Medicinal Chemistry | 2008

Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase.

Dirk A. Heerding; Nelson Rhodes; Jack D. Leber; Tammy J. Clark; Richard M. Keenan; Louis Vincent Lafrance; Mei Li; Igor G. Safonov; Dennis T. Takata; Joseph W. Venslavsky; Dennis S. Yamashita; Anthony E. Choudhry; Robert A. Copeland; Zhihong Lai; Michael D. Schaber; Peter J. Tummino; Susan L. Strum; Edgar R. Wood; Derek R. Duckett; Derek J. Eberwein; Victoria B. Knick; Timothy J. Lansing; Randy T. McConnell; Shu-Yun Zhang; Elisabeth A. Minthorn; Nestor O. Concha; Gregory L. Warren; Rakesh Kumar

Overexpression of AKT has an antiapoptotic effect in many cell types, and expression of dominant negative AKT blocks the ability of a variety of growth factors to promote survival. Therefore, inhibitors of AKT kinase activity might be useful as monotherapy for the treatment of tumors with activated AKT. Herein, we describe our lead optimization studies culminating in the discovery of compound 3g (GSK690693). Compound 3g is a novel ATP competitive, pan-AKT kinase inhibitor with IC 50 values of 2, 13, and 9 nM against AKT1, 2, and 3, respectively. An X-ray cocrystal structure was solved with 3g and the kinase domain of AKT2, confirming that 3g bound in the ATP binding pocket. Compound 3g potently inhibits intracellular AKT activity as measured by the inhibition of the phosphorylation levels of GSK3beta. Intraperitoneal administration of 3g in immunocompromised mice results in the inhibition of GSK3beta phosphorylation and tumor growth in human breast carcinoma (BT474) xenografts.


Bioorganic & Medicinal Chemistry Letters | 2009

Design of potent thiophene inhibitors of polo-like kinase 1 with improved solubility and reduced protein binding.

Kyle Allen Emmitte; George M. Adjebang; C. Webb Andrews; Jennifer G. Badiang Alberti; Ramesh Bambal; Stanley D. Chamberlain; Ronda G. Davis-Ward; Hamilton D. Dickson; Daniel F. Hassler; Keith R. Hornberger; Jeffrey R. Jackson; Kevin Wayne Kuntz; Timothy J. Lansing; Robert A. Mook; Kristen E. Nailor; Mark Andrew Pobanz; Stephon C. Smith; Chiu-Mei Sung; Mui Cheung

A series of thiophene PLK1 inhibitors was optimized for increased solubility and reduced protein binding through the appendage of basic amine functionality. Interesting selectivity between PLK1 and PLK3 was also obtained through these modifications.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery of thiophene inhibitors of polo-like kinase.

Kyle Allen Emmitte; C. Webb Andrews; Jennifer Gabriel Badiang; Ronda G. Davis-Ward; Hamilton D. Dickson; David H. Drewry; Holly Kathleen Emerson; Andrea H. Epperly; Daniel F. Hassler; Victoria B. Knick; Kevin Wayne Kuntz; Timothy J. Lansing; James A. Linn; Robert A. Mook; Kristen E. Nailor; James Michael Salovich; Glenn M. Spehar; Mui Cheung

The discovery and development of a series of thiophenes as potent and selective inhibitors of PLK is described. Identification and characterization of 2, a useful in vitro PLK inhibitor tool compound, is also presented.


Bioorganic & Medicinal Chemistry Letters | 2008

Imidazo[5,1-f][1,2,4]triazin-2-amines as novel inhibitors of polo-like kinase 1

Mui Cheung; Kevin Wayne Kuntz; Mark Andrew Pobanz; James Michael Salovich; Brian John Wilson; C.W. Andrews; Lisa M. Shewchuk; Andrea H. Epperly; Daniel F. Hassler; M.A Leesnitzer; Jeffery L. Smith; Gary K. Smith; Timothy J. Lansing; Robert A. Mook

The synthesis and biological activities of imidazo[5,1-f][1,2,4]triazin-2-amines (imidazotriazines) as novel polo-like kinase 1 inhibitors are reported.


Hybridoma | 2000

Monoclonal Antibodies Generated Against Recombinant ATM Support Kinase Activity

Krystal J. Alligood; Marcos Milla; Nelson Rhodes; Byron Ellis; Katherine E. Kilpatrick; Amanda Lee; Tona M. Gilmer; Timothy J. Lansing

We report on the rapid generation of two monoclonal antibodies, ATM A16.35 and ATM D16.11, that bind to the kinase domain of mutated ataxia telangiectasia (ATM). These antibodies were generated against E. coli-expressed recombinant protein using the RIMMS strategy. We show that ATM A16.35 binds ATM by Western blot analysis, and ATM D16.11 forms immune complexes with native ATM in immunoprecipitations without neutralizing kinase activity.


American Journal of Pathology | 1996

The p53 signal transduction pathway is intact in human neuroblastoma despite cytoplasmic localization.

Serge Goldman; Chaw-Yaun Chen; Timothy J. Lansing; Tona M. Gilmer; Michael B. Kastan


Bioorganic & Medicinal Chemistry Letters | 2004

A simple method for predicting serum protein binding of compounds from IC50 shift analysis for in vitro assays

David W. Rusnak; Zhihong Lai; Timothy J. Lansing; Nelson Rhodes; Tona M. Gilmer; Robert A. Copeland

Collaboration


Dive into the Timothy J. Lansing's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge