Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victoria B. Knick is active.

Publication


Featured researches published by Victoria B. Knick.


Molecular Cancer Therapeutics | 2007

Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity

Rakesh Kumar; Victoria B. Knick; Sharon K. Rudolph; Jennifer H. Johnson; Renae M. Crosby; Ming-Chih Crouthamel; Teresa M. Hopper; Charles G. Miller; Laura E. Harrington; James Onori; Robert J. Mullin; Tona M. Gilmer; Anne T. Truesdale; Andrea H. Epperly; Amogh Boloor; Jeffrey A. Stafford; Deirdre K. Luttrell; Mui Cheung

With the development of targeted therapeutics, especially for small-molecule inhibitors, it is important to understand whether the observed in vivo efficacy correlates with the modulation of desired/intended target in vivo. We have developed a small-molecule inhibitor of all three vascular endothelial growth factor (VEGF) receptors (VEGFR), platelet-derived growth factor receptor, and c-Kit tyrosine kinases, pazopanib (GW786034), which selectively inhibits VEGF-induced endothelial cell proliferation. It has good oral exposure and inhibits angiogenesis and tumor growth in mice. Because bolus administration of the compound results in large differences in Cmax and Ctrough, we investigated the effect of continuous infusion of a VEGFR inhibitor on tumor growth and angiogenesis. GW771806, which has similar enzyme and cellular profiles to GW786034, was used for these studies due to higher solubility requirements for infusion studies. Comparing the pharmacokinetics by two different routes of administration (bolus p.o. dosing and continuous infusion), we showed that the antitumor and antiangiogenic activity of VEGFR inhibitors is dependent on steady-state concentration of the compound above a threshold. The steady-state concentration required for these effects is consistent with the concentration required for the inhibition of VEGF-induced VEGFR2 phosphorylation in mouse lungs. Furthermore, the steady-state concentration of pazopanib determined from preclinical activity showed a strong correlation with the pharmacodynamic effects and antitumor activity in the phase I clinical trial. [Mol Cancer Ther 2007;6(7):2012–21]


Cancer Research | 2008

Characterization of an Akt Kinase Inhibitor with Potent Pharmacodynamic and Antitumor Activity

Nelson Rhodes; Dirk A. Heerding; Derek R. Duckett; Derek J. Eberwein; Victoria B. Knick; Timothy J. Lansing; Randy T. McConnell; Tona M. Gilmer; Shu-Yun Zhang; Kimberly Robell; Jason Kahana; Robert S. Geske; Elena Kleymenova; Anthony E. Choudhry; Zhihong Lai; Jack D. Leber; Elisabeth A. Minthorn; Susan L. Strum; Edgar R. Wood; Pearl S. Huang; Robert A. Copeland; Rakesh Kumar

Akt kinases 1, 2, and 3 are important regulators of cell survival and have been shown to be constitutively active in a variety of human tumors. GSK690693 is a novel ATP-competitive, low-nanomolar pan-Akt kinase inhibitor. It is selective for the Akt isoforms versus the majority of kinases in other families; however, it does inhibit additional members of the AGC kinase family. It causes dose-dependent reductions in the phosphorylation state of multiple proteins downstream of Akt, including GSK3 beta, PRAS40, and Forkhead. GSK690693 inhibited proliferation and induced apoptosis in a subset of tumor cells with potency consistent with intracellular inhibition of Akt kinase activity. In immune-compromised mice implanted with human BT474 breast carcinoma xenografts, a single i.p. administration of GSK690693 inhibited GSK3 beta phosphorylation in a dose- and time-dependent manner. After a single dose of GSK690693, >3 micromol/L drug concentration in BT474 tumor xenografts correlated with a sustained decrease in GSK3 beta phosphorylation. Consistent with the role of Akt in insulin signaling, treatment with GSK690693 resulted in acute and transient increases in blood glucose level. Daily administration of GSK690693 produced significant antitumor activity in mice bearing established human SKOV-3 ovarian, LNCaP prostate, and BT474 and HCC-1954 breast carcinoma xenografts. Immunohistochemical analysis of tumor xenografts after repeat dosing with GSK690693 showed reductions in phosphorylated Akt substrates in vivo. These results support further evaluation of GSK690693 as an anticancer agent.


Journal of Medicinal Chemistry | 2008

Discovery of 5-[[4-[(2,3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methyl-benzenesulfonamide (Pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor.

Philip A. Harris; Amogh Boloor; Mui Cheung; Rakesh Kumar; Renae M. Crosby; Ronda G. Davis-Ward; Andrea H. Epperly; Kevin Hinkle; Robert Neil Hunter; Jennifer H. Johnson; Victoria B. Knick; Christopher P. Laudeman; Deirdre K. Luttrell; Robert A. Mook; Robert T. Nolte; Sharon K. Rudolph; Jerzy Ryszard Szewczyk; Anne T. Truesdale; James Marvin Veal; Liping Wang; Jeffrey A. Stafford

Inhibition of the vascular endothelial growth factor (VEGF) signaling pathway has emerged as one of the most promising new approaches for cancer therapy. We describe herein the key steps starting from an initial screening hit leading to the discovery of pazopanib, N(4)-(2,3-dimethyl-2H-indazol-6-yl)-N(4)-methyl-N(2)-(4-methyl-3-sulfonamidophenyl)-2,4-pyrimidinediamine, a potent pan-VEGF receptor (VEGFR) inhibitor under clinical development for renal-cell cancer and other solid tumors.


Molecular Cancer Therapeutics | 2007

In vitro biological activity of a novel small-molecule inhibitor of polo-like kinase 1

Timothy J. Lansing; Randy T. McConnell; Derek R. Duckett; Glenn M. Spehar; Victoria B. Knick; Daniel F. Hassler; Nobuhiro Noro; Masaaki Furuta; Kyle Allen Emmitte; Tona M. Gilmer; Robert A. Mook; Mui Cheung

Polo-like kinase 1 (PLK1) plays key roles in the regulation of mitotic progression, including mitotic entry, spindle formation, chromosome segregation, and cytokinesis. PLK1 expression and activity are strongly linked to proliferating cells. Many studies have shown that PLK1 expression is elevated in a variety of tumors, and high expression often correlates with poor prognosis. Using a variety of methods, including small-molecule inhibition of PLK1 function and/or activity, apoptosis in cancer cell lines, cell cycle arrest in normal cell lines, and antitumor activity in vivo have been observed. In the present study, we have examined the in vitro biological activity of a novel and selective thiophene benzimidazole ATP-competitive inhibitor of PLK1 and PLK3 (5-(5,6-dimethoxy-1H-benzimidazol-1-yl)-3-{[2-(trifluoromethyl)-benzyl]oxy}thiophene-2-carboxamide, called compound 1). Compound 1 has low nanomolar activity against the PLK1 and PLK3 enzymes and potently inhibits the proliferation of a wide variety of tumor cell lines. In the lung adenocarcinoma cell line NCI-H460, compound 1 induces a transient G2-M arrest, mitotic spindle defects, and a multinucleate phenotype resulting in apoptosis, whereas normal human diploid fibroblasts arrest in G2-M and show little apoptosis. We also describe a cellular mechanistic assay that was developed to identify potent intracellular inhibitors of PLK1. In addition to its potential as a therapeutic agent for treating cancer, compound 1 is also a useful tool molecule for further investigation of the biological functions of PLK1 and PLK3. [Mol Cancer Ther 2007;6(2):450–9]


Journal of Medicinal Chemistry | 2008

Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase.

Dirk A. Heerding; Nelson Rhodes; Jack D. Leber; Tammy J. Clark; Richard M. Keenan; Louis Vincent Lafrance; Mei Li; Igor G. Safonov; Dennis T. Takata; Joseph W. Venslavsky; Dennis S. Yamashita; Anthony E. Choudhry; Robert A. Copeland; Zhihong Lai; Michael D. Schaber; Peter J. Tummino; Susan L. Strum; Edgar R. Wood; Derek R. Duckett; Derek J. Eberwein; Victoria B. Knick; Timothy J. Lansing; Randy T. McConnell; Shu-Yun Zhang; Elisabeth A. Minthorn; Nestor O. Concha; Gregory L. Warren; Rakesh Kumar

Overexpression of AKT has an antiapoptotic effect in many cell types, and expression of dominant negative AKT blocks the ability of a variety of growth factors to promote survival. Therefore, inhibitors of AKT kinase activity might be useful as monotherapy for the treatment of tumors with activated AKT. Herein, we describe our lead optimization studies culminating in the discovery of compound 3g (GSK690693). Compound 3g is a novel ATP competitive, pan-AKT kinase inhibitor with IC 50 values of 2, 13, and 9 nM against AKT1, 2, and 3, respectively. An X-ray cocrystal structure was solved with 3g and the kinase domain of AKT2, confirming that 3g bound in the ATP binding pocket. Compound 3g potently inhibits intracellular AKT activity as measured by the inhibition of the phosphorylation levels of GSK3beta. Intraperitoneal administration of 3g in immunocompromised mice results in the inhibition of GSK3beta phosphorylation and tumor growth in human breast carcinoma (BT474) xenografts.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery of thiophene inhibitors of polo-like kinase.

Kyle Allen Emmitte; C. Webb Andrews; Jennifer Gabriel Badiang; Ronda G. Davis-Ward; Hamilton D. Dickson; David H. Drewry; Holly Kathleen Emerson; Andrea H. Epperly; Daniel F. Hassler; Victoria B. Knick; Kevin Wayne Kuntz; Timothy J. Lansing; James A. Linn; Robert A. Mook; Kristen E. Nailor; James Michael Salovich; Glenn M. Spehar; Mui Cheung

The discovery and development of a series of thiophenes as potent and selective inhibitors of PLK is described. Identification and characterization of 2, a useful in vitro PLK inhibitor tool compound, is also presented.


Bioorganic & Medicinal Chemistry Letters | 2008

Synthesis and evaluation of pyrazolo[1,5-b]pyridazines as selective cyclin dependent kinase inhibitors.

Kirk L. Stevens; Michael J. Reno; Jennifer G. Badiang Alberti; Daniel J. Price; Laurie Kane-Carson; Victoria B. Knick; Lisa M. Shewchuk; Anne M. Hassell; James M. Veal; Stephen T. Davis; Robert J. Griffin; Michael Robert Peel

A novel series of pyrazolo[1,5-b]pyridazines have been synthesized and identified as cyclin dependant kinase inhibitors potentially useful for the treatment of solid tumors. Modification of the hinge-binding amine or the C(2)- and C(6)-substitutions on the pyrazolopyridazine core provided potent inhibitors of CDK4 and demonstrated enzyme selectivity against VEGFR-2 and GSK3beta.


Science | 2001

Prevention of Chemotherapy-Induced Alopecia in Rats by CDK Inhibitors

Stephen T. Davis; Bill G. Benson; H. Neal Bramson; Dennis E. Chapman; Scott Howard Dickerson; Karen M. Dold; Derek J. Eberwein; Mark P. Edelstein; Stephen V. Frye; Robert T. Gampe; Robert J. Griffin; Philip A. Harris; Anne M. Hassell; William Holmes; Robert Neil Hunter; Victoria B. Knick; Karen Elizabeth Lackey; Brett Lovejoy; Michael Joseph Luzzio; Doris M. Murray; Patricia G. Parker; Warren J. Rocque; Lisa M. Shewchuk; James Marvin Veal; Duncan Herrick Walker; Lee F. Kuyper


Bioorganic & Medicinal Chemistry Letters | 2005

Discovery of a novel and potent series of dianilinopyrimidineurea and urea isostere inhibitors of VEGFR2 tyrosine kinase

Douglas Mccord Sammond; Kristen E. Nailor; James M. Veal; Robert T. Nolte; Liping Wang; Victoria B. Knick; Sharon K. Rudolph; Anne T. Truesdale; Eldridge N. Nartey; Jeffrey A. Stafford; Rakesh Kumar; Mui Cheung


Cancer Research | 2007

Identification of GSK461364, a novel small molecule polo-like kinase 1 inhibitor for the treatment of cancer

Kevin Wayne Kuntz; James Michael Salovich; Robert A. Mook; Kyle Allen Emmitte; Stanley D. Chamberlain; Tara Renae Rheault; Keith R. Hornberger; Holly Kathleen Emerson; Stephon C. Smith; Brian John Wilson; Ronda G. Davis-Ward; Kelly Horne Donaldson; George M. Adjabeng; Kristen E. Nailor; Daniel F. Hassler; Gary K. Smith; Timothy J. Lansing; Derek Duckett; Victoria B. Knick; Randy T. McConnell; Jeffrey Jackson; Mui Cheung

Collaboration


Dive into the Victoria B. Knick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge