Timothy J. Sadlon
University of Adelaide
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Timothy J. Sadlon.
Nature Immunology | 2011
Marc Beyer; Yasser Thabet; Roman Ulrich Müller; Timothy J. Sadlon; Sabine Classen; Katharina Lahl; Samik Basu; Xuyu Zhou; Samantha L. Bailey-Bucktrout; Wolfgang Krebs; Eva A. Schönfeld; Jan P. Böttcher; Tatiana N. Golovina; Christian T. Mayer; Andrea Hofmann; Daniel Sommer; Svenja Debey-Pascher; Elmar Endl; Andreas Limmer; Keli L. Hippen; Bruce R. Blazar; Robert Balderas; Thomas Quast; Andreas Waha; Günter Mayer; Michael Famulok; Percy A. Knolle; Claudia Wickenhauser; Waldemar Kolanus; Bernhard Schermer
Regulatory T cells (Treg cells) are essential for self-tolerance and immune homeostasis. Lack of effector T cell (Teff cell) function and gain of suppressive activity by Treg cells are dependent on the transcriptional program induced by Foxp3. Here we report that repression of SATB1, a genome organizer that regulates chromatin structure and gene expression, was crucial for the phenotype and function of Treg cells. Foxp3, acting as a transcriptional repressor, directly suppressed the SATB1 locus and indirectly suppressed it through the induction of microRNAs that bound the SATB1 3′ untranslated region. Release of SATB1 from the control of Foxp3 in Treg cells caused loss of suppressive function, establishment of transcriptional Teff cell programs and induction of Teff cell cytokines. Our data support the proposal that inhibition of SATB1-mediated modulation of global chromatin remodeling is pivotal for maintaining Treg cell functionality.
Journal of Immunology | 2010
Timothy J. Sadlon; Bridget Gabrielle Wilkinson; Stephen Pederson; Cheryl Y. Brown; Suzanne Bresatz; Tessa Gargett; Elizabeth Melville; Kaimen Peng; Richard J. D'Andrea; Gary G Glonek; Gregory J. Goodall; Heddy Zola; M. Frances Shannon; Simon C. Barry
The transcription factor FOXP3 is essential for the formation and function of regulatory T cells (Tregs), and Tregs are essential for maintaining immune homeostasis and tolerance. This is demonstrated by a lethal autoimmune defect in mice lacking Foxp3 and in immunodysregulation polyendocrinopathy enteropathy X-linked syndrome patients. However, little is known about the molecular basis of human FOXP3 function or the relationship between direct and indirect targets of FOXP3 in human Tregs. To investigate this, we have performed a comprehensive genome-wide analysis for human FOXP3 target genes from cord blood Tregs using chromatin immunoprecipitation array profiling and expression profiling. We have identified 5579 human FOXP3 target genes and derived a core Treg gene signature conserved across species using mouse chromatin immunoprecipitation data sets. A total of 739 of the 5579 FOXP3 target genes were differentially regulated in Tregs compared with Th cells, thus allowing the identification of a number of pathways and biological functions overrepresented in Tregs. We have identified gene families including cell surface molecules and microRNAs that are differentially expressed in FOXP3+ Tregs. In particular, we have identified a novel role for peptidase inhibitor 16, which is expressed on the cell surface of >80% of resting human CD25+FOXP3+ Tregs, suggesting that in conjunction with CD25 peptidase inhibitor 16 may be a surrogate surface marker for Tregs with potential clinical application.
Stem Cells | 2004
Timothy J. Sadlon; Ian D. Lewis; Richard J. D'Andrea
Blood formation occurs throughout the life of an individual in a process driven by hematopoietic stem cells (HSCs). The ability of bone marrow (BM) and cord blood (CB) HSC to undergo self‐renewal and develop into multiple blood lineages has made these cells an important clinical resource. Transplantation with BM‐ and CB‐derived HSCs is now used extensively for treatment of hematological disorders, malignancies, and immunodeficiencies. An understanding of the embryonic origin of HSC and the factors regulating their generation and expansion in vivo will provide important information for the manipulation of these cells ex vivo. This is critical for the further development of CB transplantation, the potential of which is limited by small numbers of HSC in the donorpopulation.
Oncogene | 2012
N McInnes; Timothy J. Sadlon; C Y Brown; Stephen Pederson; Marc Beyer; Joachim L. Schultze; Gregory J. Goodall; Simon C. Barry
The transcription factor FOXP3 has been identified as a tumour suppressor in the breast and prostate epithelia, but little is known about its specific mechanism of action. We have identified a feed-forward regulatory loop in which FOXP3 suppresses the expression of the oncogene SATB1. In particular, we demonstrate that SATB1 is not only a direct target of FOXP3 repression, but that FOXP3 also induces two miRs, miR-7 and miR-155, which specifically target the 3′-UTR of SATB1 to further regulate its expression. We conclude that FOXP3-regulated miRs form part of the mechanism by which FOXP3 prevents the transformation of the healthy breast epithelium to a cancerous phenotype. Approaches aimed at restoring FOXP3 function and the miRs it regulates could help provide new approaches to target breast cancer.
Cytokine & Growth Factor Reviews | 2009
Michelle Perugini; Antiopi Varelias; Timothy J. Sadlon; Richard J. D’Andrea
Hematopoietic growth factor (HGF) mimetics offer a number of attractive advantages as therapeutic agents. Small chemical compounds, in particular, provide reduced cost and oral availability. As many of these mimetics are unrelated in structure to the normal cytokine the immunogenic response is not a significant issue. Isolation of small peptide agonists for erythropoietin (EPO) and thrombopoietin (TPO) receptors has been associated with significant translational challenges and here we summarize approaches used to achieve the potency and stability required for clinical utility. We also compare and contrast the initial screening approaches, and the translational and clinical issues associated with two recently approved TPO mimetics, romiplostim and the orally available eltrombopag. Finally we summarize the development and clinical findings for the EPO mimetic, Hematide, consider alternative approaches, and discuss the future potential for isolation of growth factor (GF) mimetics.
Human Gene Therapy | 2010
Cheryl Y. Brown; Timothy J. Sadlon; Tessa Gargett; Elizabeth Melville; Rui Zhang; Yvette Drabsch; Michael Ling; Craig A. Strathdee; Thomas J. Gonda; Simon C. Barry
Manipulation of gene expression is an invaluable tool to study gene function in vitro and in vivo. The application of small inhibitory RNAs to knock down gene expression provides a relatively simple, elegant, but transient approach to study gene function in many cell types as well as in whole animals. Short hairpin structures (shRNAs) are a logical advance as they can be expressed continuously and are hence suitable for stable gene knockdown. Drug-inducible systems have now been developed; however, application of the technology has been hampered by persistent problems with low or transient expression, leakiness or poor inducibility of the short hairpin, and lack of reversibility. We have developed a robust, versatile, single lentiviral vector tool that delivers tightly regulated, fully reversible, doxycycline-responsive knockdown of target genes (FOXP3 and MYB), using single short hairpin RNAs. To demonstrate the capabilities of the vector we targeted FOXP3 because it plays a critical role in the development and function of regulatory T cells. We also targeted MYB because of its essential role in hematopoiesis and implication in breast cancer progression. The versatility of this vector is hence demonstrated by knockdown of distinct genes in two biologically separate systems.
Journal of Leukocyte Biology | 2009
Jonathon F. Hutton; Tessa Gargett; Timothy J. Sadlon; Suzanne Bresatz; Cheryl Y. Brown; Heddy Zola; M. Frances Shannon; Richard J. D'Andrea; Simon C. Barry
Adult stem cells are capable of generating all of the cells of the hematopoietic system, and this process is orchestrated in part by the interactions between these cells and the stroma. T cell progenitors emerge from the stem cell compartment and migrate to the thymus, where their terminal differentiation and maturation occur, and it is during this phase that selection shapes the immune repertoire. Notch ligands, including Delta‐like 1 (DL1), play a critical role in this lymphoid differentiation. To mimic this in vitro, stroma‐expressing DL1 have been used to generate CD4+CD8+ double‐positive and single‐positive T cells from hematopoietic stem/progenitor cells. This system provides a robust tool to investigate thymopoiesis; however, its capacity to generate regulatory T cells (Tregs) has yet to be reported. Natural Tregs (nTregs) develop in the thymus and help maintain immune homeostasis and have potential clinical use as a cell therapy for modulation of autoimmune disease or for transplant tolerization. Here, we describe for the first time the development of a population of CD4+CD25+ CD127loFoxP3+ cells that emerge in coculture of cord blood (CB) CD34+ progenitors on OP9‐DL1 stroma. These hematopoietic progenitor‐derived CD4+CD25+ Tregs have comparable suppressor function with CB nTregs in vitro. The addition of IL‐2 to the coculture enhanced the expansion and survival of this population significantly. This manipulable culture system, therefore, generates functional Tregs and provides a system to elucidate the mechanism of Treg development.
Differentiation | 2012
Anna L. Brown; Diana Salerno; Teresa Sadras; Grant A. Engler; Chung H. Kok; C. Wilkinson; Saumaya E. Samaraweera; Timothy J. Sadlon; Michelle Perugini; Ian D. Lewis; Thomas J. Gonda; Richard J. D'Andrea
Granulocyte-macrophage colony stimulating factor (GM-CSF) promotes the growth, survival, differentiation and activation of normal myeloid cells and is essential for fully functional macrophage differentiation in vivo. To better understand the mechanisms by which growth factors control the balance between proliferation and self-renewal versus growth-suppression and differentiation we have used the bi-potent FDB1 myeloid cell line, which proliferates in IL-3 and differentiates to granulocytes and macrophages in response to GM-CSF. This provides a manipulable model in which to dissect the switch between growth and differentiation. We show that, in the context of signaling from an activating mutant of the GM-CSF receptor β subunit, a single intracellular tyrosine residue (Y577) mediates the granulocyte fate decision. Loss of granulocyte differentiation in a Y577F second-site mutant is accompanied by enhanced macrophage differentiation and accumulation of β-catenin together with activation of Tcf4 and other Wnt target genes. These include the known macrophage lineage inducer, Egr1. We show that forced expression of Tcf4 or a stabilised β-catenin mutant is sufficient to promote macrophage differentiation in response to GM-CSF and that GM-CSF can regulate β-catenin stability, most likely via GSK3β. Consistent with this pathway being active in primary cells we show that inhibition of GSK3β activity promotes the formation of macrophage colonies at the expense of granulocyte colonies in response to GM-CSF. This study therefore identifies a novel pathway through which growth factor receptor signaling can interact with transcriptional regulators to influence lineage choice during myeloid differentiation.
The International Journal of Biochemistry & Cell Biology | 2004
Timothy C. Cox; Timothy J. Sadlon; Quenten Schwarz; Christopher Matthews; Phillip D Wise; Liza L. Cox; Sylvia S. Bottomley; Brian K. May
The initial step of the heme biosynthetic pathway in erythroid cells is catalyzed by an erythroid-specific isoform of 5-aminolevulinate synthase-2 (ALAS2). Previously, an alternatively spliced mRNA isoform of ALAS2 was identified although the functional significance of the encoded protein was unknown. We sought to characterize the contribution of this ALAS2 isoform to overall erythroid heme biosynthesis. Here, we report the identification of three novel ALAS2 mRNA splice isoforms in addition to the previously described isoform lacking exon 4-derived sequence. Quantitation of these mRNAs using ribonuclease protection experiments revealed that the isoform without exon 4-derived sequence represents approximately 35-45% of total ALAS2 mRNA while the newly identified transcripts together represent approximately 15%. Despite the significant amounts of these three new transcripts, their features indicate that they are unlikely to substantially contribute to overall mitochondrial ALAS2 activity. In contrast, in vitro studies show that the major splice variant (lacking exon 4-encoded sequence) produces a functional enzyme, albeit with slightly reduced activity and with affinity for the ATP-specific, beta subunit of succinyl CoA synthase, comparable to that of mature ALAS2. It was also established that the first 49 amino acids of the ALAS2 pre-protein are necessary and sufficient for translocation across the mitochondrial inner membrane and that this process is not affected by the absence of exon 4-encoded sequence. We conclude that the major splice isoform of ALAS2 is functional in vivo and could significantly contribute to erythroid heme biosynthesis and hemoglobin formation.
Cellular Immunology | 2012
Ian C. Nicholson; Christos Mavrangelos; Daniel Bird; Suzanne Bresatz-Atkins; Nicola Eastaff-Leung; Randall H. Grose; Batjargal Gundsambuu; Danika Hill; Debbrah J. Millard; Timothy J. Sadlon; Sarah To; Heddy Zola; Simon C. Barry; Doreen Krumbiegel
The peptidase inhibitor PI16 was shown previously by microarray analysis to be over-expressed by CD4-positive/CD25-positive Treg compared with CD4-positive/CD25-negative Th cells. Using a monoclonal antibody to the human PI16 protein, we found that PI16-positive Treg have a memory (CD45RO-positive) phenotype and express higher levels of FOXP3 than PI16-negative Treg. PI16-positive Treg are functional in suppressor assays in vitro with potency similar to PI16-negative Treg. Further phenotyping of the PI16-positive Treg revealed that the chemokine receptors CCR4 and CCR6 are expressed by more of the PI16-positive/CD45RO-positive Treg compared with PI16-negative/CD45RO-positive Treg or Th cells. PI16-positive Treg showed enhanced in vitro migration towards the inflammatory chemokines CCL17 and CCL20, suggesting they can migrate to sites of inflammation. We conclude that PI16 identifies a novel distinct subset of functional memory Treg which can migrate to sites of inflammation and regulate the pro-inflammatory response at those sites.