Timothy J. Toner
Merck & Co.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Timothy J. Toner.
Journal of Virology | 2003
Danilo R. Casimiro; Ling Chen; Tong-Ming Fu; Robert K. Evans; Michael J. Caulfield; Mary-Ellen Davies; Aimin Tang; Minchun Chen; Lingyi Huang; Virginia Harris; Daniel C. Freed; Keith A. Wilson; Sheri A. Dubey; De-Min Zhu; Denise K. Nawrocki; Henryk Mach; Robert Troutman; Lynne Isopi; Donna M. Williams; William Hurni; Zheng Xu; Jeffrey G. Smith; Su Wang; Xu Liu; Liming Guan; Romnie Long; Wendy L. Trigona; Gwendolyn J. Heidecker; Helen C. Perry; Natasha Persaud
ABSTRACT Cellular immune responses, particularly those associated with CD3+ CD8+ cytotoxic T lymphocytes (CTL), play a primary role in controlling viral infection, including persistent infection with human immunodeficiency virus type 1 (HIV-1). Accordingly, recent HIV-1 vaccine research efforts have focused on establishing the optimal means of eliciting such antiviral CTL immune responses. We evaluated several DNA vaccine formulations, a modified vaccinia virus Ankara vector, and a replication-defective adenovirus serotype 5 (Ad5) vector, each expressing the same codon-optimized HIV-1 gag gene for immunogenicity in rhesus monkeys. The DNA vaccines were formulated with and without one of two chemical adjuvants (aluminum phosphate and CRL1005). The Ad5-gag vector was the most effective in eliciting anti-Gag CTL. The vaccine produced both CD4+ and CD8+ T-cell responses, with the latter consistently being the dominant component. To determine the effect of existing antiadenovirus immunity on Ad5-gag-induced immune responses, monkeys were exposed to adenovirus subtype 5 that did not encode antigen prior to immunization with Ad5-gag. The resulting anti-Gag T-cell responses were attenuated but not abolished. Regimens that involved priming with different DNA vaccine formulations followed by boosting with the adenovirus vector were also compared. Of the formulations tested, the DNA-CRL1005 vaccine primed T-cell responses most effectively and provided the best overall immune responses after boosting with Ad5-gag. These results are suggestive of an immunization strategy for humans that are centered on use of the adenovirus vector and in which existing adenovirus immunity may be overcome by combined immunization with adjuvanted DNA and adenovirus vector boosting.
PLOS ONE | 2010
Miguel Aste-Amezaga; Ningyan Zhang; Janet Lineberger; Beth Anne Arnold; Timothy J. Toner; Mingcheng Gu; Lingyi Huang; Salvatore Vitelli; Kim Vo; Peter Haytko; Jing Zhang Zhao; Frederic Baleydier; Sarah L'heureux; Hongfang Wang; Wendy R. Gordon; Elizabeth Thoryk; Marie Blanke Andrawes; Kittichoat Tiyanont; Kimberly Stegmaier; Giovanni Roti; Kenneth N. Ross; Laura L. Franlin; Hui Wang; Fubao Wang; Michael Chastain; Andrew J. Bett; Laurent P. Audoly; Stephen C. Blacklow; Hans E. Huber
Background Notch receptors normally play a key role in guiding a variety of cell fate decisions during development and differentiation of metazoan organisms. On the other hand, dysregulation of Notch1 signaling is associated with many different types of cancer as well as tumor angiogenesis, making Notch1 a potential therapeutic target. Principal Findings Here we report the in vitro activities of inhibitory Notch1 monoclonal antibodies derived from cell-based and solid-phase screening of a phage display library. Two classes of antibodies were found, one directed against the EGF-repeat region that encompasses the ligand-binding domain (LBD), and the second directed against the activation switch of the receptor, the Notch negative regulatory region (NRR). The antibodies are selective for Notch1, inhibiting Jag2-dependent signaling by Notch1 but not by Notch 2 and 3 in reporter gene assays, with EC50 values as low as 5±3 nM and 0.13±0.09 nM for the LBD and NRR antibodies, respectively, and fail to recognize Notch4. While more potent, NRR antibodies are incomplete antagonists of Notch1 signaling. The antagonistic activity of LBD, but not NRR, antibodies is strongly dependent on the activating ligand. Both LBD and NRR antibodies bind to Notch1 on human tumor cell lines and inhibit the expression of sentinel Notch target genes, including HES1, HES5, and DTX1. NRR antibodies also strongly inhibit ligand-independent signaling in heterologous cells transiently expressing Notch1 receptors with diverse NRR “class I” point mutations, the most common type of mutation found in human T-cell acute lymphoblastic leukemia (T-ALL). In contrast, NRR antibodies failed to antagonize Notch1 receptors bearing rare “class II” or “class III” mutations, in which amino acid insertions generate a duplicated or constitutively sensitive metalloprotease cleavage site. Signaling in T-ALL cell lines bearing class I mutations is partially refractory to inhibitory antibodies as compared to cell-penetrating gamma-secretase inhibitors. Conclusions/Significance Antibodies that compete with Notch1 ligand binding or that bind to the negative regulatory region can act as potent inhibitors of Notch1 signaling. These antibodies may have clinical utility for conditions in which inhibition of signaling by wild-type Notch1 is desired, but are likely to be of limited value for treatment of T-ALLs associated with aberrant Notch1 activation.
Human Gene Therapy | 2002
Rima Youil; Timothy J. Toner; Qin Su; Minchun Chen; Aimin Tang; Andrew J. Bett; Danilo R. Casimiro
The usefulness of adenovirus as a vehicle for transgene delivery is limited greatly by the induction of neutralizing anti-adenoviral immunity following the initial administration, thereby resulting in shorter-term and reduced levels of transgene expression. In this paper, we outline a strategy for the generation of recombinant Ad5-based adenovectors that have undergone a complete hexon exchange in an effort to circumvent pre-existing anti-vector humoral immunity. Eighteen different chimeric adenoviral vectors (from subgroups A, B, C, D, and E) have been constructed using a combination of direct cloning and bacterial homologous recombination methods. However, only chimeric Ad5-based constructs in which the hexons from Ad1, Ad2, Ad6, and Ad12 are incorporated in place of the Ad5 hexon were successfully rescued into viruses. Despite several attempts, the remaining fourteen chimeric adenovectors were not rescuable. In vivo rodent studies using transgenes for human immunodeficiency virus type 1 (HIV-1) gag and secreted human alkaline phosphatase (SEAP) suggest that the Ad5/Ad6-gag chimera (wherein Ad5 hexon was replaced with that of Ad6) is able to evade neutralizing antibodies generated against Ad5 vector efficiently. However, it appears that cross-reactive cytotoxic T lymphocytes (CTL) may also play a role in controlling in vivo infectivity of Ad5/Ad6-gag chimera. The Ad5/Ad12 chimera was found to be extremely ineffective in the i.m. delivery and expression of HIV-1 gag in mice compared to the Ad5/Ad6 construct. Implications of these results will be discussed.
Human Gene Therapy | 2003
Rima Youil; Timothy J. Toner; Qin Su; Danilo R. Casimiro; John W. Shiver; Ling Chen; Andrew J. Bett; Bethany M. Rogers; Eric C. Burden; Aimin Tang; Michelle Chen; Emilio A. Emini; David C. Kaslow; John G. Aunins; Nedim E. Altaras
First-generation adenovectors have been developed for gene therapy and vaccine applications. The construction of these adenovectors has entailed the use of numerous types of expression cassettes. It has long been known that first-generation adenovectors can be rescued more easily and to higher titers with some transgenes than with others. This study has systematically shown that there can be marked differences in growth properties of recombinant adenovectors attributable to the use of promoters, the orientation of the transgene within the E1A/E1B-deleted region, and the inclusion of the E3 region. In addition, we had demonstrated the benefit of extending the packaging signal region to include elements V, VI, and VII. The effects of the complete packaging region were studied by plasmid competition studies between original and modified adenovectors. Similar competition studies between E3(+) and E3(-) adenovectors were performed and showed that the E3(+) vector had a growth advantage over its E3(-) counterpart. By making various changes, we have enhanced the growth capacity of our recombinant adenovector by more than 3-fold under serum-free and cell suspension growth conditions. Along with this enhanced growth, our adenovectors have maintained their genetic stability after 21 successive passages in cell culture. This increased robustness will be critical when adapting first-generation recombinant adenovectors to commercial production.
Journal of Virological Methods | 2001
Rima Youil; Timothy J. Toner; Qin Su; David C. Kaslow
Recombinant adenoviruses are used widely in gene therapy research. Much work has been carried out to remove specific components of the wild type adenovirus (e.g. E1 gene) in order to make them safer for human use. In addition to such efforts, it is vitally important to ensure that the production of recombinant adenoviruses meet safety guidelines not only with regard to the absence of replication competent adenoviruses but for other variant species that may be present in a viral preparation. In this report, a time and cost efficient method is described for the isolation of full length adenovirus genomes without resorting to plaque purification. The procedure uses a bacterial homologous recombination system and results in the conversion of the double-stranded linear adenovirus genome into a circularized plasmid form that can be easily analyzed by restriction digestion, PCR, DNA sequencing or used in transient transfection studies. Also, the adenovirus plasmids that are generated may also be rescued back into virus form if needed. The entire procedure takes 4 days or less instead of weeks that plaque purification or dilution cloning requires. Furthermore, the method does not require the use of tissue culture materials or facilities. More importantly, this procedure allows for a more extensive and thorough examination of any viral preparation, since it allows for the detection of variants incapable of propagation without the assistance of co-infecting intact adenoviral genomes. Under standard conditions of plaque purification, these variant genomes are not detected. It is predicted that far more variant genomes will be observed using this rapid method than would otherwise be detected by standard plaque purification methods.
Journal of Virological Methods | 2004
Rima Youil; Qin Su; Timothy J. Toner; Christopher Szymkowiak; Wan-Sang Kwan; Rubin B; Petrukhin L; Irina Kiseleva; Alan Shaw; Daniel DiStefano
Archive | 2001
Emilio A. Emini; Rima Youil; Andrew J. Bett; Ling Chen; David C. Kaslow; John W. Shiver; Timothy J. Toner; Danilo R. Casimiro
Journal of Virological Methods | 2003
Christopher Szymkowiak; Wan-Sang Kwan; Qin Su; Timothy J. Toner; Alan R Shaw; Rima Youil
Virus Research | 2004
Thomas Palker; Irina Kiseleva; Kimberly Johnston; Qin Su; Timothy J. Toner; Christopher Szymkowiak; Wan-Sang Kwan; Boris Rubin; Luba Petrukhin; Joan Wlochowski; Juanita Monteiro; Nikolai Kraiouchkine; Daniel DiStefano; Larisa Rudenko; Alan Shaw; Rima Youil
Journal of Virological Methods | 2004
I. Kiseleva; Qin Su; Timothy J. Toner; Christopher Szymkowiak; Wan-Sang Kwan; Larisa Rudenko; Alan Shaw; Rima Youil