Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy R. Koves is active.

Publication


Featured researches published by Timothy R. Koves.


Cell Metabolism | 2008

Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance.

Timothy R. Koves; John R. Ussher; Robert C. Noland; Dorothy H. Slentz; Merrie Mosedale; Olga Ilkayeva; James R. Bain; Robert D. Stevens; Jason R. B. Dyck; Christopher B. Newgard; Gary D. Lopaschuk; Deborah M. Muoio

Previous studies have suggested that insulin resistance develops secondary to diminished fat oxidation and resultant accumulation of cytosolic lipid molecules that impair insulin signaling. Contrary to this model, the present study used targeted metabolomics to find that obesity-related insulin resistance in skeletal muscle is characterized by excessive beta-oxidation, impaired switching to carbohydrate substrate during the fasted-to-fed transition, and coincident depletion of organic acid intermediates of the tricarboxylic acid cycle. In cultured myotubes, lipid-induced insulin resistance was prevented by manipulations that restrict fatty acid uptake into mitochondria. These results were recapitulated in mice lacking malonyl-CoA decarboxylase (MCD), an enzyme that promotes mitochondrial beta-oxidation by relieving malonyl-CoA-mediated inhibition of carnitine palmitoyltransferase 1. Thus, mcd(-/-) mice exhibit reduced rates of fat catabolism and resist diet-induced glucose intolerance despite high intramuscular levels of long-chain acyl-CoAs. These findings reveal a strong connection between skeletal muscle insulin resistance and lipid-induced mitochondrial stress.


Nature Medicine | 2004

Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance

Deborah M. Muoio; Masakazu Shiota; Yuka Fujimoto; Gary W. Cline; Gerald I. Shulman; Timothy R. Koves; Robert D. Stevens; David S. Millington; Christopher B. Newgard

Lipid infusion or ingestion of a high-fat diet results in insulin resistance, but the mechanism underlying this phenomenon remains unclear. Here we show that, in rats fed a high-fat diet, whole-animal, muscle and liver insulin resistance is ameliorated following hepatic overexpression of malonyl–coenzyme A (CoA) decarboxylase (MCD), an enzyme that affects lipid partitioning. MCD overexpression decreased circulating free fatty acid (FFA) and liver triglyceride content. In skeletal muscle, levels of triglyceride and long-chain acyl-CoA (LC-CoA)—two candidate mediators of insulin resistance—were either increased or unchanged. Metabolic profiling of 36 acylcarnitine species by tandem mass spectrometry revealed a unique decrease in the concentration of one lipid-derived metabolite, β-OH-butyrate, in muscle of MCD-overexpressing animals. The best explanation for our findings is that hepatic expression of MCD lowered circulating FFA levels, which led to lowering of muscle β-OH-butyrate levels and improvement of insulin sensitivity.


Psychopharmacology | 1997

Differences in extracellular dopamine concentrations in the nucleus accumbens during response-dependent and response-independent cocaine administration in the rat.

Scott E. Hemby; Conchita Co; Timothy R. Koves; James E. Smith; Steven I. Dworkin

Abstract Studies indicate that nucleus accumbens (NAcc) dopamine neurotransmission is involved in the reinforcing and direct effects of cocaine. The present study was initiated to explore further the relationship of NAcc extracellular dopamine concentrations ([DA]e) and cocaine self-administration using a yoked littermate design. In the first experiment, one rat from each litter was trained to self-administer cocaine IV (SA; 0.33 mg/inf) under a fixed ratio 2 schedule, while a second rat received simultaneous infusions of cocaine yoked to the infusions of the SA (YC). NAcc [DA]e and cocaine concentrations ([COC]) were assessed during the test sessions using in vivo microdialysis combined with microbore HPLC procedures. [DA]e and [COC] were significantly elevated in the SA and YC groups during the self-administration session; however, [DA]e were greater in the SA group compared to the YC group in the first hour of the session, even though [COC] were not significantly different. On the following day, the rats previously allowed to self-administer cocaine were administered response-independent cocaine infusions yoked to the infusion pattern from the previous day. [DA]e were significantly elevated above baseline levels during the session but were significantly less than concentrations obtained when cocaine was self-administered by these subjects. [COC] during the sessions were not significantly different between the two days. Baseline [DA]e were not significantly different between the SA and YC groups or between Day 1 and Day 2. Furthermore, there was no significant difference in the in vitro probe recovery between one and two days following probe implantation. These results suggest that the context in which cocaine was administered significantly altered the neurochemical response to equivalent brain concentrations of cocaine. NAcc [DA]e was significantly increased when the delivery of cocaine infusions was contingent on the behavior of the rat, indicative of a role in the neural processes underlying cocaine reinforcement.


Diabetes | 2010

Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole body oxygen consumption

John R. Ussher; Timothy R. Koves; Virgilio J. J. Cadete; Liyan Zhang; Jagdip S. Jaswal; Suzanne J. Swyrd; David G. Lopaschuk; Spencer D. Proctor; Wendy Keung; Deborah M. Muoio; Gary D. Lopaschuk

OBJECTIVE It has been proposed that skeletal muscle insulin resistance arises from the accumulation of intramyocellular lipid metabolites that impede insulin signaling, including diacylglycerol and ceramide. We determined the role of de novo ceramide synthesis in mediating muscle insulin resistance. RESEARCH DESIGN AND METHODS Mice were subjected to 12 weeks of diet-induced obesity (DIO), and then treated for 4 weeks with myriocin, an inhibitor of serine palmitoyl transferase-1 (SPT1), the rate-limiting enzyme of de novo ceramide synthesis. RESULTS After 12 weeks of DIO, C57BL/6 mice demonstrated a doubling in gastrocnemius ceramide content, which was completely reversed (141.5 ± 15.8 vs. 94.6 ± 10.2 nmol/g dry wt) via treatment with myriocin, whereas hepatic ceramide content was unaffected by DIO. Interestingly, myriocin treatment did not alter the DIO-associated increase in gastrocnemius diacyglycerol content, and the only correlation observed between lipid metabolite accumulation and glucose intolerance occurred with ceramide (R = 0.61). DIO mice treated with myriocin showed a complete reversal of glucose intolerance and insulin resistance which was associated with enhanced insulin-stimulated Akt and glycogen synthase kinase 3β phosphorylation. Furthermore, myriocin treatment also decreased intramyocellular ceramide content and prevented insulin resistance development in db/db mice. Finally, myriocin-treated DIO mice displayed enhanced oxygen consumption rates (3,041 ± 124 vs. 2,407 ± 124 ml/kg/h) versus their control counterparts. CONCLUSIONS Our results demonstrate that the intramyocellular accumulation of ceramide correlates strongly with the development of insulin resistance, and suggests that inhibition of SPT1 is a potentially promising target for the treatment of insulin resistance.


Journal of Biological Chemistry | 2009

Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control.

Robert C. Noland; Timothy R. Koves; Sarah E. Seiler; Helen Lum; Robert M. Lust; Olga Ilkayeva; Robert D. Stevens; Fausto G. Hegardt; Deborah M. Muoio

In addition to its essential role in permitting mitochondrial import and oxidation of long chain fatty acids, carnitine also functions as an acyl group acceptor that facilitates mitochondrial export of excess carbons in the form of acylcarnitines. Recent evidence suggests carnitine requirements increase under conditions of sustained metabolic stress. Accordingly, we hypothesized that carnitine insufficiency might contribute to mitochondrial dysfunction and obesity-related impairments in glucose tolerance. Consistent with this prediction whole body carnitine dimunition was identified as a common feature of insulin-resistant states such as advanced age, genetic diabetes, and diet-induced obesity. In rodents fed a lifelong (12 month) high fat diet, compromised carnitine status corresponded with increased skeletal muscle accumulation of acylcarnitine esters and diminished hepatic expression of carnitine biosynthetic genes. Diminished carnitine reserves in muscle of obese rats was accompanied by marked perturbations in mitochondrial fuel metabolism, including low rates of complete fatty acid oxidation, elevated incomplete β-oxidation, and impaired substrate switching from fatty acid to pyruvate. These mitochondrial abnormalities were reversed by 8 weeks of oral carnitine supplementation, in concert with increased tissue efflux and urinary excretion of acetylcarnitine and improvement of whole body glucose tolerance. Acetylcarnitine is produced by the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT). A role for this enzyme in combating glucose intolerance was further supported by the finding that CrAT overexpression in primary human skeletal myocytes increased glucose uptake and attenuated lipid-induced suppression of glucose oxidation. These results implicate carnitine insufficiency and reduced CrAT activity as reversible components of the metabolic syndrome.


Molecular Cell | 2013

SIRT4 Coordinates the Balance between Lipid Synthesis and Catabolism by Repressing Malonyl CoA Decarboxylase

Gaëlle Laurent; Natalie J. German; Asish K. Saha; Vincent C.J. de Boer; Michael P.A. Davies; Timothy R. Koves; Noah Dephoure; Frank Fischer; Gina Boanca; Bhavapriya Vaitheesvaran; Scott B. Lovitch; Arlene H. Sharpe; Irwin J. Kurland; Clemens Steegborn; Steven P. Gygi; Deborah M. Muoio; Neil B. Ruderman; Marcia C. Haigis

Lipid metabolism is tightly controlled by the nutritional state of the organism. Nutrient-rich conditions increase lipogenesis, whereas nutrient deprivation promotes fat oxidation. In this study, we identify the mitochondrial sirtuin, SIRT4, as a regulator of lipid homeostasis. SIRT4 is active in nutrient-replete conditions to repress fatty acid oxidation while promoting lipid anabolism. SIRT4 deacetylates and inhibits malonyl CoA decarboxylase (MCD), an enzyme that produces acetyl CoA from malonyl CoA. Malonyl CoA provides the carbon skeleton for lipogenesis and also inhibits fat oxidation. Mice lacking SIRT4 display elevated MCD activity and decreased malonyl CoA in skeletal muscle and white adipose tissue. Consequently, SIRT4 KO mice display deregulated lipid metabolism, leading to increased exercise tolerance and protection against diet-induced obesity. In sum, this work elucidates SIRT4 as an important regulator of lipid homeostasis, identifies MCD as a SIRT4 target, and deepens our understanding of the malonyl CoA regulatory axis.


Cell Metabolism | 2010

Adipose Acyl-CoA synthetase-1 directs fatty acids toward β-oxidation and is required for cold thermogenesis

Jessica M. Ellis; Lei O. Li; Pei Chi Wu; Timothy R. Koves; Olga Ilkayeva; Robert D. Stevens; Steven M. Watkins; Deborah M. Muoio; Rosalind A. Coleman

Long-chain acyl-CoA synthetase-1 (ACSL1) contributes 80% of total ACSL activity in adipose tissue and was believed to be essential for the synthesis of triacylglycerol. We predicted that an adipose-specific knockout of ACSL1 (Acsl1(A-/-)) would be lipodystrophic, but compared to controls, Acsl1(A-/-) mice had 30% greater fat mass when fed a low-fat diet and gained weight normally when fed a high-fat diet. Acsl1(A-/-) adipocytes incorporated [(14)C]oleate into glycerolipids normally, but fatty acid (FA) oxidation rates were 50%-90% lower than in control adipocytes and mitochondria. Acsl1(A-/-) mice were markedly cold intolerant, and beta(3)-adrenergic agonists did not increase oxygen consumption, despite normal adrenergic signaling in brown adipose tissue. The reduced adipose FA oxidation and marked cold intolerance of Acsl1(A-/-) mice indicate that normal activation of FA for oxidation in adipose tissue in vivo requires ACSL1. Thus, ACSL1 has a specific function in directing the metabolic partitioning of FAs toward beta-oxidation in adipocytes.


Journal of Neurochemistry | 1993

Chronic Cocaine Administration Increases CNS Tyrosine Hydroxylase Enzyme Activity and mRNA Levels and Tryptophan Hydroxylase Enzyme Activity Levels

Sheila L. Vrana; Kent E. Vrana; Timothy R. Koves; James E. Smith; Steven I. Dworkin

Cocaine is an inhibitor of dopamine and serotonin reuptake by synaptic terminals and has potent reinforcing effects that lead to its abuse. Tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) catalyze the rate‐limiting steps in dopamine and serotonin biosynthesis, respectively, and are the subject of dynamic regulatory mechanisms that could be sensitive to the actions of cocaine. This study assessed the effects of chronic cocaine on brain TH and TPH activities. Cocaine was administered (0.33 mg/infusion, i.v.) to rats for 7 days every 8 min for 6 h per day. This administration schedule is similar to patterns of self‐administration by rats when given ad libitum access to this dose. This chronic, response‐independent administration increased TH enzyme activity in the substantia nigra (30%) and ventral tegmental area (43%). Moreover, TH mRNA levels were also increased (45 and 50%, respectively). In contrast to the enzymatic and molecular biological changes in the cell bodies, TH activity was unchanged in the terminal fields (corpus striaturn and nucleus accumbens). Similarly, TPH activity was increased by 50% in the raphe nucleus (serotonergic cell bodies). In summary, the chronic response‐independent administration of cocaine produces increases in the expression of TH mRNA and activity in both the cell bodies of motor (nigrostriatal) and reinforcement (mesolimbic) dopamine pathways. These increases are not manifested in the terminal fields of these pathways.


Circulation | 2016

The Failing Heart Relies on Ketone Bodies as a Fuel

Gregory Aubert; Ola J. Martin; Julie L. Horton; Ling Lai; Rick B. Vega; Teresa C. Leone; Timothy R. Koves; Stephen J. Gardell; Marcus Krüger; Charles L. Hoppel; E. Douglas Lewandowski; Peter A. Crawford; Deborah M. Muoio; Daniel P. Kelly

Background— Significant evidence indicates that the failing heart is energy starved. During the development of heart failure, the capacity of the heart to utilize fatty acids, the chief fuel, is diminished. Identification of alternate pathways for myocardial fuel oxidation could unveil novel strategies to treat heart failure. Methods and Results— Quantitative mitochondrial proteomics was used to identify energy metabolic derangements that occur during the development of cardiac hypertrophy and heart failure in well-defined mouse models. As expected, the amounts of proteins involved in fatty acid utilization were downregulated in myocardial samples from the failing heart. Conversely, expression of &bgr;-hydroxybutyrate dehydrogenase 1, a key enzyme in the ketone oxidation pathway, was increased in the heart failure samples. Studies of relative oxidation in an isolated heart preparation using ex vivo nuclear magnetic resonance combined with targeted quantitative myocardial metabolomic profiling using mass spectrometry revealed that the hypertrophied and failing heart shifts to oxidizing ketone bodies as a fuel source in the context of reduced capacity to oxidize fatty acids. Distinct myocardial metabolomic signatures of ketone oxidation were identified. Conclusions— These results indicate that the hypertrophied and failing heart shifts to ketone bodies as a significant fuel source for oxidative ATP production. Specific metabolite biosignatures of in vivo cardiac ketone utilization were identified. Future studies aimed at determining whether this fuel shift is adaptive or maladaptive could unveil new therapeutic strategies for heart failure.


Molecular and Cellular Biology | 2011

Mouse Cardiac Acyl Coenzyme A Synthetase 1 Deficiency Impairs Fatty Acid Oxidation and Induces Cardiac Hypertrophy

Jessica M. Ellis; Shannon M. Mentock; Michael A. DePetrillo; Timothy R. Koves; Shiraj Sen; Steven M. Watkins; Deborah M. Muoio; Gary W. Cline; Heinrich Taegtmeyer; Gerald I. Shulman; Monte S. Willis; Rosalind A. Coleman

ABSTRACT Long-chain acyl coenzyme A (acyl-CoA) synthetase isoform 1 (ACSL1) catalyzes the synthesis of acyl-CoA from long-chain fatty acids and contributes the majority of cardiac long-chain acyl-CoA synthetase activity. To understand its functional role in the heart, we studied mice lacking ACSL1 globally (Acsl1T−/−) and mice lacking ACSL1 in heart ventricles (Acsl1H−/−) at different times. Compared to littermate controls, heart ventricular ACSL activity in Acsl1T−/− mice was reduced more than 90%, acyl-CoA content was 65% lower, and long-chain acyl-carnitine content was 80 to 90% lower. The rate of [14C]palmitate oxidation in both heart homogenate and mitochondria was 90% lower than in the controls, and the maximal rates of [14C]pyruvate and [14C]glucose oxidation were each 20% higher. The mitochondrial area was 54% greater than in the controls with twice as much mitochondrial DNA, and the mRNA abundance of Pgc1α and Errα increased by 100% and 41%, respectively. Compared to the controls, Acsl1T−/− and Acsl1H−/− hearts were hypertrophied, and the phosphorylation of S6 kinase, a target of mammalian target of rapamycin (mTOR) kinase, increased 5-fold. Our data suggest that ACSL1 is required to synthesize the acyl-CoAs that are oxidized by the heart, and that without ACSL1, diminished fatty acid (FA) oxidation and compensatory catabolism of glucose and amino acids lead to mTOR activation and cardiac hypertrophy without lipid accumulation or immediate cardiac dysfunction.

Collaboration


Dive into the Timothy R. Koves's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Lynis Dohm

East Carolina University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge