Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy V. Duncan is active.

Publication


Featured researches published by Timothy V. Duncan.


ACS Applied Materials & Interfaces | 2015

Release of Engineered Nanomaterials from Polymer Nanocomposites: Diffusion, Dissolution, and Desorption

Timothy V. Duncan; Karthik V. Pillai

Polymer nanocomposites-polymer-based materials that incorporate filler elements possessing at least one dimension in the nanometer range-are increasingly being developed for commercial applications ranging from building infrastructure to food packaging to biomedical devices and implants. Despite a wide range of intended applications, it is also important to understand the potential for exposure to these nanofillers, which could be released during routine use or abuse of these materials, so it can be determined whether they pose a risk to human health or the environment. This article is the first in a series of two that review the state of the science regarding the release of engineered nanomaterials (ENMs) from polymer nanocomposites. Two ENM release paradigms are considered in this series: the release of ENMs via passive diffusion, desorption, and dissolution into external liquid media and release of ENMs assisted by matrix degradation. The present article focuses primarily on the first paradigm and includes (1) an overview of basic interactions between polymers and liquid environments and a brief summary of diffusion physics as they apply to polymeric materials; (2) a summary of both experimental and theoretical methods to assess contaminant release (including ENMs) from polymers by diffusion, dissolution, and desorption; and (3) a thorough, critical review of the associated body of peer-reviewed literature on ENM release by these mechanisms. A short outlook section on knowledge gaps and future research needs is also provided.


Comprehensive Reviews in Food Science and Food Safety | 2014

Measurement methods to detect, characterize, and quantify engineered nanomaterials in foods

Gurmit Singh; Chady Stephan; Paul Westerhoff; David Carlander; Timothy V. Duncan

This article is one of a series of 4 that reports on a task of the NanoRelease Food Additive project of the International Life Science Institute Center for Risk Science Innovation and Application to identify, evaluate, and develop methods that are needed to confidently detect, characterize, and quantify intentionally produced engineered nanomaterials (ENMs) released from food along the alimentary tract. This particular article focuses on the problem of detecting ENMs in food, paying special attention to matrix interferences and how to deal with them. In this review, an in-depth analysis of the literature related to detection of ENMs in complex matrices is presented. The literature review includes discussions of sampling methods, such as centrifugation and ENM extraction. Available analytical methods, as well as emerging methods, are also presented. The article concludes with a summary of findings and an overview of potential knowledge gaps and targets for method development in this area.


ACS Applied Materials & Interfaces | 2015

Release of Engineered Nanomaterials from Polymer Nanocomposites: the Effect of Matrix Degradation

Timothy V. Duncan

Polymer nanocomposites-polymer-based materials that incorporate filler elements possessing at least one dimension in the nanometer range-are increasingly being developed for commercial applications ranging from building infrastructure to food packaging to biomedical devices and implants. Despite a wide range of intended applications, it is also important to understand the potential for exposure to these nanofillers, which could be released during routine use or abuse of these materials so that it can be determined whether they pose a risk to human health or the environment. This article is the second of a pair that review what is known about the release of engineered nanomaterials (ENMs) from polymer nanocomposites. Two roughly separate ENM release paradigms are considered in this series: the release of ENMs via passive diffusion, desorption, and dissolution into external liquid media and the release of ENMs assisted by matrix degradation. The present article is focused primarily on the second paradigm and includes a thorough, critical review of the associated body of peer-reviewed literature on ENM release by matrix degradation mechanisms, including photodegradation, thermal decomposition, mechanical wear, and hydrolysis. These release mechanisms may be especially relevant to nanocomposites that are likely to be subjected to weathering, including construction and infrastructural materials, sporting equipment, and materials that might potentially end up in landfills. This review pays particular attention to studies that shed light on specific release mechanisms and synergistic mechanistic relationships. The review concludes with a short section on knowledge gaps and future research needs.


Current Opinion in Biotechnology | 2017

Nanoscale sensors for assuring the safety of food products

Yun Wang; Timothy V. Duncan

As far as chemical analysis is concerned, foods are among the most difficult matrices to work with because they are complex, heterogeneous substances with a high degree of variety. Assaying foods for trace levels of chemical and microbiological substances is a challenge that often requires the application of time-consuming, expensive analytical instrumentation in dedicated facilities populated by highly trained personnel. Therefore there is a continued demand for new analytical technologies that can detect small concentrations of chemicals or microbes in a more cost- and time-effective manner, preferably in the field, on the production line, and/or non-destructively, with little to no sample pre-treatment, and possibly by individuals with scant scientific training. In the last decade, nanotechnology - a branch of science that takes advantage of the unique chemical and physical properties of matter on the nanoscale - has created new opportunities for both qualitative and quantitative detection of vapors/gasses, small molecules, biopolymers, and even living microbes in a fraction of the time and expense of traditional analytical techniques. This article offers a focused review of recent progress in nanotechnology-enabled biosensing as applied to foods and related matrices, paying particular attention to trends in the field, recent breakthroughs, and current areas of need. Special focus is paid to two primary categories of nanobiosensors - optical and electrochemical - and the discussion includes a comparison of their various strengths and weaknesses as they pertain ensuring the safety of the food supply.


Comprehensive Reviews in Food Science and Food Safety | 2014

Methods to Evaluate Uptake of Engineered Nanomaterials by the Alimentary Tract

Heather Alger; Dragan Momcilovic; David Carlander; Timothy V. Duncan

This article is one of a series of 4 that report on a task of the NanoRelease Food Additive project of the International Life Science Institute Center for Risk Science Innovation and Application to identify, evaluate, and develop methods that are needed to confidently detect, characterize, and quantify intentionally produced engineered nanomaterials (ENMs) released from food along the alimentary tract. This particular article focuses on the problem of detecting and characterizing ENMs in the various compartments of the alimentary tract after they have been ingested from dietary sources. An in depth analysis of the literature related to oral toxicity of ENMs is presented, paying particular attention to analytical methodology and sample preparation. The review includes a discussion of model systems that can be used to study oral uptake of ENMs in the absence of human toxicological data or other live-animal studies. The strengths and weaknesses of various analytical and sample preparation techniques are discussed. The article concludes with a summary of findings and a discussion of potential knowledge gaps and targets for method development in this area.


Comprehensive Reviews in Food Science and Food Safety | 2014

Measurement Methods for the Oral Uptake of Engineered Nanomaterials from Human Dietary Sources: Summary and Outlook

Christopher W. Szakal; Lyubov Tsytsikova; David Carlander; Timothy V. Duncan

This article is one of a series of 4 that report on a task of the NanoRelease Food Additive (NRFA) project of the International. Life Science Institute Center for Risk Science Innovation and Application. The project aims are to identify, evaluate, and develop methods that are needed to confidently detect, characterize, and quantify intentionally produced engineered nanomaterials (ENMs) released from food along the alimentary tract. This particular article offers an overview of the NRFA project, describing the project scope and goals, as well as the strategy by which the task group sought to achieve these goals. A condensed description of the general challenge of detecting ENMs in foods and a brief review of available and emerging methods for ENM detection is provided here, paying particular attention to the kind of information that might be desired from an analysis and the strengths and weaknesses of the various approaches that might be used to attain this information. The article concludes with an executive summary of the task groups broad findings related to the 3 topic areas, which are covered in more detail in 3 subsequent articles in this series. The end result is a thorough evaluation of the state of ENM measurement science specifically as it applies to oral uptake of ENMs from human dietary sources.


Environmental science. Nano | 2016

Environmental release of core–shell semiconductor nanocrystals from free-standing polymer nanocomposite films

Karthik V. Pillai; Patrick J. Gray; Chun Chieh Tien; Reiner Bleher; Li Piin Sung; Timothy V. Duncan

Concomitant with the development of polymer nanocomposite (PNC) technologies across numerous industries is an expanding awareness of the uncertainty with which engineered nanoparticles embedded within these materials may be released into the external environment, particularly liquid media. Recently there has been an interest in evaluating potential exposure to nanoscale fillers from PNCs, but existing studies often rely upon uncharacterized, poor quality, or proprietary materials, creating a barrier to making general mechanistic conclusions about release phenomena. In this study we employed semiconductor nanoparticles (quantum dots, QDs) as model nanofillers to quantify potential release into liquid media under specific environmental conditions. QDs of two sizes were incorporated into low-density polyethylene by melt compounding and the mixtures were extruded as free-standing fluorescent films. These films were subjected to tests under conditions intended to accelerate potential release of embedded particles or dissolved residuals into liquid environments. Using inductively-coupled plasma mass spectrometry and laser scanning confocal microscopy, it was found that the acidity of the external medium, exposure time, and small differences in particle size (on the order of a few nm) all play pivotal roles in release kinetics. Particle dissolution was found to play a major if not dominant role in the release process. This paper also presents the first evidence that internally embedded nanoparticles contribute to the mass transfer, an observation made possible via the use of a model system that was deliberately designed to probe the complex relationships between nanoparticle-enabled plastics and the environment.


Archive | 2014

Nanoparticles in Polymer Nanocomposite Food Contact Materials: Uses, Potential Release, and Emerging Toxicological Concerns

Karthik V. Pillai; Piper Reid Hunt; Timothy V. Duncan

Several types of nanotechnology-enabled plastics intended for the storage and transport of foods are close to commercialization. For food contact applications, nanocomposite plastics offer many advantages over traditional polymers. However, while the unique properties of engineered nanomaterials (ENMs) may be harnessed for many positive ends, there are concerns about whether ENMs pose risks to human health. The primary areas of interest for assessing safety of nanocomposite food contact materials (FCM) are the potential for migration of ENMs into food and the potential toxicity of such released ENMs. This chapter offers a review of theoretical and experimental methods to assess the likelihood of ENM release from nanotechnology-enabled materials into liquid media, as well as a brief overview of the potential toxicological considerations of ENMs likely to be used in FCMs. Because the use of nanotechnology in food contact applications is a developing field, this chapter also provides background information on some of the food-related applications of nanocomposites currently in development, and a discussion of current methods being used to assess the release of non-nanoscale food packaging additives or contaminants. The goal of this work is to provide readers with an appreciation for current activity in this field as well as an understanding of data gaps that may need to be addressed in order to ensure the safety of this emerging technology.


Journal of AOAC International | 2018

High Throughput Quantification of Quaternary Ammonium Cations in Food Simulants by Flow-Injection Mass Spectrometry

Longjiao Yu; Sargun Malik; Timothy V. Duncan; Joseph E. Jablonski

Background: A flow-injection MS (FI/MS) method was evaluated for the quantitation of quaternary ammonium cations (QACs) in simple food simulants. Methods: The calibration standard was dimethyldioctadecyl ammonium ion (C18-C18), and the internal standard was benzyldimethylhexadecyl (BDMHD) ammonium ion. Calibration standards based on the C18-C18 ion were prepared in ethanol with a range of 5 to 500 ppb and contained 100 ppb BDMHD. The mobile phase was 90 + 10 (v/v) acetonitrile-5 mM aqueous ammonium acetate and flowed directly into an electrospray source of the mass spectrometer. Detection was accomplished by single ion recording (SIR) in positive mode. Results: Calibration curves were linear with coefficients of determination above 0.995, and the LOQ was 5 ppb. Recoveries of four QACs derived from Arquad 2HT-75, a commercially available surfactant, were measured in common food simulants: ethanol, water, 10% (v/v) ethanol in water, and 3% (v/v) aqueous acetic acid. A solvent exchange procedure was employed for the three aqueous solvents, which included complete evaporation of the sample followed by reconstitution in ethanol prior to injection. The solvent exchange method minimized losses because of QAC adsorption on glass surfaces. Recoveries ranged from 74.4 ± 4.0 to 106.7 ± 6.6% for the two most abundant Arquad 2HT-75 component cations, dimethyldioctadecyl ammonium and dimethyloctadecyl-hexadecyl ammonium. Conclusions: This method is suitable to quantify trace levels of QACs in food simulants as part of exposure evaluations related to their use in emerging food contact materials.


Environmental Science & Technology | 2018

Influence of Different Acids on the Transport of CdSe Quantum Dots from Polymer Nanocomposites to Food Simulants

Patrick J. Gray; Jessica E. Hornick; Ashutosh Sharma; Rebecca G. Weiner; John L. Koontz; Timothy V. Duncan

We fabricated polymer nanocomposites (PNCs) from low-density polyethylene and CdSe quantum dots (QDs) and used these materials to explore potential exposure after long-term storage in different acidic media that could be encountered in food contact applications. While the low-level release of QD-associated mass into all the food simulants was observed, exposure to dilute acetic acid resulted in more than double the mass transfer compared to that which occurred during exposure to dilute hydrochloric acid at the same pH. Conversely, exposure to citric acid resulted in a suppression of QD release. Permeation experiments and confocal microscopy were used to reveal mechanistic details underlying these mass-transfer phenomena. From this work, we conclude that the permeation of undissociated acid molecules into the polymer, limited by partitioning of the acids into the hydrophobic polymer, plays a larger role than pH in determining exposure to nanoparticles embedded in plastics. Although caution must be exercised when extrapolating these results to PNCs incorporating other nanofillers, these findings are significant because they undermine current thinking about the influence of pH on nanofiller release phenomena. From a regulatory standpoint, these results also support current guidance that 3% acetic acid is an acceptable acidic food simulant for PNCs fabricated from hydrophobic polymers because the other acids investigated resulted in significantly less exposure.

Collaboration


Dive into the Timothy V. Duncan's collaboration.

Top Co-Authors

Avatar

Karthik V. Pillai

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Patrick J. Gray

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Akhil Bajaj

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashutosh Sharma

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Brendan J. Casey

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

Christopher Forrey

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

David M. Saylor

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

Dustin W. Janes

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Jiwen Zheng

Center for Devices and Radiological Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge