Timothy W. Deller
GE Healthcare
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Timothy W. Deller.
Medical Physics | 2016
Alexander M. Grant; Timothy W. Deller; Mohammad Mehdi Khalighi; Sri Harsha Maramraju; Gaspar Delso; Craig S. Levin
PURPOSE The GE SIGNA PET/MR is a new whole body integrated time-of-flight (ToF)-PET/MR scanner from GE Healthcare. The system is capable of simultaneous PET and MR image acquisition with sub-400 ps coincidence time resolution. Simultaneous PET/MR holds great potential as a method of interrogating molecular, functional, and anatomical parameters in clinical disease in one study. Despite the complementary imaging capabilities of PET and MRI, their respective hardware tends to be incompatible due to mutual interference. In this work, the GE SIGNA PET/MR is evaluated in terms of PET performance and the potential effects of interference from MRI operation. METHODS The NEMA NU 2-2012 protocol was followed to measure PET performance parameters including spatial resolution, noise equivalent count rate, sensitivity, accuracy, and image quality. Each of these tests was performed both with the MR subsystem idle and with continuous MR pulsing for the duration of the PET data acquisition. Most measurements were repeated at three separate test sites where the system is installed. RESULTS The scanner has achieved an average of 4.4, 4.1, and 5.3 mm full width at half maximum radial, tangential, and axial spatial resolutions, respectively, at 1 cm from the transaxial FOV center. The peak noise equivalent count rate (NECR) of 218 kcps and a scatter fraction of 43.6% are reached at an activity concentration of 17.8 kBq/ml. Sensitivity at the center position is 23.3 cps/kBq. The maximum relative slice count rate error below peak NECR was 3.3%, and the residual error from attenuation and scatter corrections was 3.6%. Continuous MR pulsing had either no effect or a minor effect on each measurement. CONCLUSIONS Performance measurements of the ToF-PET whole body GE SIGNA PET/MR system indicate that it is a promising new simultaneous imaging platform.
IEEE Transactions on Medical Imaging | 2016
Craig S. Levin; Sri Harsha Maramraju; Mohammad Mehdi Khalighi; Timothy W. Deller; Gaspar Delso; Floris Jansen
A recent entry into the rapidly evolving field of integrated PET/MR scanners is presented in this paper: a whole body hybrid PET/MR system (SIGNA PET/MR, GE Healthcare) capable of simultaneous acquisition of both time-of-flight (TOF) PET and high resolution MR data. The PET ring was integrated into an existing 3T MR system resulting in a (patient) bore opening of 60 cm diameter, with a 25 cm axial FOV. PET performance was evaluated both on the standalone PET ring and on the same detector integrated into the MR system, to assess the level of mutual interference between both subsystems. In both configurations we obtained detector performance data. PET detector performance was not significantly affected by integration into the MR system. The global energy resolution was within 2% (10.3% versus 10.5%), and the system coincidence time resolution showed a maximum change of <; 3% (385 ps versus 394 ps) when measured outside MR and during simultaneous PET/MRI acquisitions, respectively. To evaluate PET image quality and resolution, the NEMA IQ phantom was acquired with MR idle and with MR active. Impact of PET on MR IQ was assessed by comparing SNR with PET acquisition on and off. B0 and B1 homogeneities were acquired before and after the integration of the PET ring inside the magnet. In vivo brain and whole body head-to-thighs data were acquired to demonstrate clinical image quality.
Medical Imaging 2007: Physics of Medical Imaging | 2007
Timothy W. Deller; Kadri Nizar Jabri; John M. Sabol; Xianfeng Ni; Gopal B. Avinash; Rowland Saunders; Renuka Uppaluri
Digital tomosynthesis (DTS) is emerging as an advanced imaging technique that enables volumetric slice imaging with a detector typically used for projection radiography. An understanding of the interactions between DTS acquisition parameters and characteristics of the reconstructed slice images is required for optimizing the acquisition protocols of various clinical applications. This paper presents our investigation of the effects and interactions of acquisition parameters, including sweep angle, number of projections, and dose, on clinically relevant image-quality metrics. Metrics included the image characteristics of in-slice resolution, depth resolution, image noise level, and presence of ripple. Phantom experiments were performed to characterize the relationship between the acquisition parameters and image quality. Results showed that the depth resolution was mainly dependent on sweep angle. Visibility of ripple was determined by the projection density (number of projections divided by sweep angle), as well as properties of the imaged object. Image noise was primarily dependent on total dose and not significantly affected by the number of projections. These experimental and theoretical results were confirmed using anthropomorphic phantoms and also used to develop clinical acquisition protocols. Assessment of phantom and clinical images obtained with these protocols revealed that the use of acquisition protocols optimized for a given clinical exam enables rapid, low-dose, high quality DTS imaging for diverse clinical applications including abdomen, hand, shoulder, spine, and chest. We conclude that DTS acquisition parameters have a significant effect on image quality and should be tailored for the imaged anatomy and desired clinical application. Relationships developed in this work will guide the selection of acquisition protocols to improve image quality and clinical utility of DTS for a wide variety of clinical exams.
ieee nuclear science symposium | 2006
Ravindra Mohan Manjeshwar; Steven G. Ross; Maria Iatrou; Timothy W. Deller; Charles W. Stearns
Incorporating all data corrections into the system model optimizes image quality in statistical iterative PET image reconstruction. We have previously shown that including attenuation, randoms and scatter in the forward 3D iterative model results in faster convergence and improved image quality for ML-OSEM. This paper extends this work to allow the accurate modeling of crystal efficiency, detector deadtime, and the native block-based detector geometry. In order to model these effects, it is necessary to perform forward and back-projections directly from image space to the projection geometry of the PET scanner, rather than to an idealized, equally spaced projection space. We have modified the distance-driven projectors to accurately model both the uneven spacing of the sinogram due to the ring curvature as well as the gaps resulting from the block structure of the scanner. This results in a reconstruction method, which can incorporate the crystal efficiency and block deadtime effects into the forward system model while maintaining the fast reconstruction times enabled by the distance driven projector design. Results on the GE Discovery STEtrade scanner show improvements in image resolution consistent with removing the interpolative smoothing of the data into the equally spaced projection space.
nuclear science symposium and medical imaging conference | 2010
K. Thielemans; Evren Asma; Sangtae Ahn; Ravindra Mohan Manjeshwar; Timothy W. Deller; Steve Ross; Charles W. Stearns; Alexander Ganin
EM reconstructions with point-spread-function (PSF) modelling is performed to increase the spatial resolution in PET images. These images exhibit slower initial convergence compared to reconstructions without PSF modelling. Furthermore, they exhibit more pronounced ringing around the edges of sharp features. We investigate the effect of different objects and PSF modelling on the convergence rate and edge behaviour of the EM algorithm in two stages: (i) at the initial iterations where the updates are large and (ii) at the later iterations where the updates are small. For the initial iterations, we compare the sharpness of the EM updates with and without PSF modelling. We show via simulations that the PSF modelling during the backprojection step causes smoother updates and consequently smoother images in the early stages of the EM algorithm. For the later iterations, we approximate the image as the ML image plus a perturbation term and develop an approximate update equation for the perturbation, which depends on the Hessian (H) of the log-likelihood. Based on this equation and the spectral analysis of H, we demonstrate how edges with ringing are preserved in the later stages of the algorithm and eliminated only for the case of noiseless data reconstruction with an unrealistically high number of iterations. In addition, we provide an intuitive explanation for the creation of the edge artefacts in terms of the PSF modelling during the backprojection step.
PLOS ONE | 2015
Marcelo A. Queiroz; Gaspar Delso; Scott D. Wollenweber; Timothy W. Deller; Konstantinos Zeimpekis; Martin W. Huellner; Felipe de Galiza Barbosa; Gustav K. von Schulthess; Patrick Veit-Haibach
Purpose To evaluate the possible activity reduction in FDG-imaging in a Time-of-Flight (TOF) PET/MR, based on cross-evaluation of patient-based NECR (noise equivalent count rate) measurements in PET/CT, cross referencing with phantom-based NECR curves as well as initial evaluation of TOF-PET/MR with reduced activity. Materials and Methods A total of 75 consecutive patients were evaluated in this study. PET/CT imaging was performed on a PET/CT (time-of-flight (TOF) Discovery D 690 PET/CT). Initial PET/MR imaging was performed on a newly available simultaneous TOF-PET/MR (Signa PET/MR). An optimal NECR for diagnostic purposes was defined in clinical patients (NECRP) in PET/CT. Subsequent optimal activity concentration at the acquisition time ([A]0) and target NECR (NECRT) were obtained. These data were used to predict the theoretical FDG activity requirement of the new TOF-PET/MR system. Twenty-five initial patients were acquired with (retrospectively reconstructed) different imaging times equivalent for different activities on the simultaneous PET/MR for the evaluation of clinically realistic FDG-activities. Results The obtained values for NECRP, [A]0 and NECRT were 114.6 (± 14.2) kcps (Kilocounts per second), 4.0 (± 0.7) kBq/mL and 45 kcps, respectively. Evaluating the NECRT together with the phantom curve of the TOF-PET/MR device, the theoretical optimal activity concentration was found to be approximately 1.3 kBq/mL, which represents 35% of the activity concentration required by the TOF-PET/CT. Initial evaluation on patients in the simultaneous TOF-PET/MR shows clinically realistic activities of 1.8 kBq/mL, which represent 44% of the required activity. Conclusion The new TOF-PET/MR device requires significantly less activity to generate PET-images with good-to-excellent image quality, due to improvements in detector geometry and detector technologies. The theoretically achievable dose reduction accounts for up to 65% but cannot be fully translated into clinical routine based on the coils within the FOV and MR-sequences applied at the same time. The clinically realistic reduction in activity is slightly more than 50%. Further studies in a larger number of patients are needed to confirm our findings.
Journal of Cerebral Blood Flow and Metabolism | 2018
Mohammad Mehdi Khalighi; Timothy W. Deller; Audrey P. Fan; Praveen Gulaka; Bin Shen; Prachi Singh; Jun-Hyung Park; Frederick T. Chin; Greg Zaharchuk
15O-H2O PET imaging is an accurate method to measure cerebral blood flow (CBF) but it requires an arterial input function (AIF). Historically, image-derived AIF estimation suffers from low temporal resolution, spill-in, and spill-over problems. Here, we optimized tracer dose on a time-of-flight PET/MR according to the acquisition-specific noise-equivalent count rate curve. An optimized dose of 850 MBq of 15O-H2O was determined, which allowed sufficient counts to reconstruct a short time-frame PET angiogram (PETA) during the arterial phase. This PETA enabled the measurement of the extent of spill-over, while an MR angiogram was used to measure the true arterial volume for AIF estimation. A segment of the high cervical arteries outside the brain was chosen, where the measured spill-in effects were minimal. CBF studies were performed twice with separate [15O]-H2O injections in 10 healthy subjects, yielding values of 88 ± 16, 44 ± 9, and 58 ± 11 mL/min/100 g for gray matter, white matter, and whole brain, with intra-subject CBF differences of 5.0 ± 4.0%, 4.1 ± 3.3%, and 4.5 ± 3.7%, respectively. A third CBF measurement after the administration of 1 g of acetazolamide showed 35 ± 23%, 29 ± 20%, and 33 ± 22% increase in gray matter, white matter, and whole brain, respectively. Based on these findings, the proposed noninvasive AIF method provides robust CBF measurement with 15O-H2O PET.
nuclear science symposium and medical imaging conference | 2010
Joshua M. Wilson; Steven G. Ross; Timothy W. Deller; Evren Asma; Ravindra Mohan Manjeshwar; Timothy G. Turkington
Image quality was measured for varied tuning parameters of four penalized likelihood potential functions with reconstructed PET data of multiple hot spheres in a warm background. Statistical image reconstruction with potential functions that penalize differences in neighboring image voxels can produce a smoother image, but large differences that occur at physical boundaries should not be penalized and allowed to form. Over-smoothing PET images with small lesions is especially problematic because it can completely smooth a lesions intensities into the background. Fourteen 1.0-cm spheres with a 6:1 radioactivity concentration relative to the warm background were positioned throughout a 40-cm long phantom with a 36×21-cm oval cross section. By varying the tuning parameters, multiple image sets were reconstructed with modified block sequential regularized expectation maximization statistical reconstruction algorithm using 4 potential functions: quadratic, generalized Gaussian, logCosh, and Huber. Regions of interest were positioned on the images, and the image quality was measured as contrast recovery, background variability, and signal-to-noise ratio across the ROIs. This phantom study was used to further narrow the choice of potential functions and parameter values to either improve the image quality of small lesions or avoid deteriorating them at the cost of optimizing reconstruction parameters for other image features. Neither the quadratic or logCosh potentials performed well for small lesion SNR because they either over-smoothed the lesions or under-smoothed the background, respectively. Varying the parameter values for the Huber potential had a proportional effect on the background variability and the sphere signal such that SNR was relatively fixed. Generalized Gaussian simultaneously decreased background variability and increased small lesion contrast recovery that produced SNRs as much as two-times higher than the other potential functions.
IEEE Transactions on Nuclear Science | 2016
Mohammad Mehdi Khalighi; Gaspar Delso; Sri Harsha Maramraju; Timothy W. Deller; Craig S. Levin; Gary H. Glover
A silicon photomultiplier (SiPM)-based time-of-flight capable PET detector has been integrated with a 70 cm wide-bore 3T MR scanner for simultaneous whole-body imaging (MR750w, GE Healthcare, Waukesha, WI). After insertion of the PET detector, the final PET/MR bore is 60 cm wide (SIGNA PET/MR, GE Healthcare, Waukesha, WI). The MR performance was compared before and after the PET ring insertion. B0 homogeneity, B1+ uniformity of the body coil along with peak B1+, coherent noise, and FBIRN (Function Biomedical Informatics Research Network) tests are used to compare the MR performance. It is shown that B0 homogeneity and coherent noise have not changed according to the system specifications. Peak B1+ is increased by 33% and B1+ inhomogeneity is increased by 4% after PET ring insertion due to a smaller diameter body coil design. The FBIRN test shows similar temporal stability before and after PET ring insertion. Due to a smaller body coil on the PET/MR system, the signal fluctuation to noise ratio (SFNR) and SNR for body receive coil, are improved by ~40% and ~160% for Echo Planar Imaging (EPI) and spiral sequences respectively. Comparison using RF- and gradient-intensive clinical sequences shows inserting the PET detectors into the wide-bore MRI has not compromised the MR image quality according to these tests.
The Journal of Nuclear Medicine | 2018
Timothy W. Deller; Mohammad Mehdi Khalighi; Floris Jansen; Gary H. Glover
The recent introduction of simultaneous whole-body PET/MR scanners has enabled new research taking advantage of the complementary information obtainable with PET and MRI. One such application is kinetic modeling, which requires high levels of PET quantitative stability. To accomplish the required PET stability levels, the PET subsystem must be sufficiently isolated from the effects of MR activity. Performance measurements have previously been published, demonstrating sufficient PET stability in the presence of MR pulsing for typical clinical use; however, PET stability during radiofrequency (RF)-intensive and gradient-intensive sequences has not previously been evaluated for a clinical whole-body scanner. In this work, PET stability of the GE SIGNA PET/MR was examined during simultaneous scanning of aggressive MR pulse sequences. Methods: PET performance tests were acquired with MR idle and during simultaneous MR pulsing. Recent system improvements mitigating RF interference and gain variation were used. A fast recovery fast spin echo MR sequence was selected for high RF power, and an echo planar imaging sequence was selected for its high heat-inducing gradients. Measurements were performed to determine PET stability under varying MR conditions using the following metrics: sensitivity, scatter fraction, contrast recovery, uniformity, count rate performance, and image quantitation. A final PET quantitative stability assessment for simultaneous PET scanning during functional MRI studies was performed with a spiral in-and-out gradient echo sequence. Results: Quantitation stability of a 68Ge flood phantom was demonstrated within 0.34%. Normalized sensitivity was stable during simultaneous scanning within 0.3%. Scatter fraction measured with a 68Ge line source in the scatter phantom was stable within the range of 40.4%–40.6%. Contrast recovery and uniformity were comparable for PET images acquired simultaneously with multiple MR conditions. Peak noise equivalent count rate was 224 kcps at an effective activity concentration of 18.6 kBq/mL, and the count rate curves and scatter fraction curve were consistent for the alternating MR pulsing states. A final test demonstrated quantitative stability during a spiral functional MRI sequence. Conclusion: PET stability metrics demonstrated that PET quantitation was not affected during simultaneous aggressive MRI. This stability enables demanding applications such as kinetic modeling.