Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tina B. Miranda is active.

Publication


Featured researches published by Tina B. Miranda.


Journal of Cellular Physiology | 2007

DNA methylation: The nuts and bolts of repression

Tina B. Miranda; Peter A. Jones

DNA methylation is an epigenetic modification which plays an important role in chromatin organization and gene expression. DNA methylation can silence genes and repetitive elements through a process which leads to the alteration of chromatin structure. The mechanisms which target DNA methylation to specific sites in the genome are not fully understood. In this review, we will discuss the mechanisms which lead to the long‐term silencing of genes and will survey the progression that has been made in determining the targeted mechanisms for de novo DNA methylation. J. Cell. Physiol. 213: 384–390, 2007.


Molecular Cancer Therapeutics | 2009

DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation

Tina B. Miranda; Connie C. Cortez; Christine B. Yoo; Gangning Liang; Masanobu Abe; Theresa K. Kelly; Victor E. Marquez; Peter A. Jones

DNA methylation, histone modifications, and nucleosomal occupancy collaborate to cause silencing of tumor-related genes in cancer. The development of drugs that target these processes is therefore important for cancer therapy. Inhibitors of DNA methylation and histone deacetylation have been approved by the Food and Drug Administration for treatment of hematologic malignancies. However, drugs that target other mechanisms still need to be developed. Recently, 3-deazaneplanocin A (DZNep) was reported to selectively inhibit trimethylation of lysine 27 on histone H3 (H3K27me3) and lysine 20 on histone H4 (H4K20me3) as well as reactivate silenced genes in cancer cells. This finding opens the door to the pharmacologic inhibition of histone methylation. We therefore wanted to further study the mechanism of action of DZNep in cancer cells. Western blot analysis shows that DZNep globally inhibits histone methylation and is not selective. Two other drugs, sinefungin and adenosine dialdehyde, have similar effects as DZNep on H3K27me3. Intriguingly, chromatin immunoprecipitation of various histone modifications and microarray analysis show that DZNep acts through a different pathway than 5-aza-2′-deoxycytidine, a DNA methyltransferase inhibitor. These observations give us interesting insight into how chromatin structure affects gene expression. We also determined the kinetics of gene activation to understand if the induced changes were somatically heritable. We found that upon removal of DZNep, gene expression is reduced to its original state. This suggests that there is a homeostatic mechanism that returns the histone modifications to their “ground state” after DZNep treatment. Our data show the strong need for further development of histone methylation inhibitors. [Mol Cancer Ther 2009;8(6):1579–88]


Molecular Cell | 2011

Transcription Factor AP1 Potentiates Chromatin Accessibility and Glucocorticoid Receptor Binding

Simon C. Biddie; Sam John; Pete J. Sabo; Robert E. Thurman; Thomas A. Johnson; R. Louis Schiltz; Tina B. Miranda; Myong Hee Sung; Saskia Trump; Stafford L. Lightman; Charles Vinson; John A. Stamatoyannopoulos; Gordon L. Hager

Ligand-dependent transcription by the nuclear receptor glucocorticoid receptor (GR) is mediated by interactions with coregulators. The role of these interactions in determining selective binding of GR to regulatory elements remains unclear. Recent findings indicate that a large fraction of genomic GR binding coincides with chromatin that is accessible prior to hormone treatment, suggesting that receptor binding is dictated by proteins that maintain chromatin in an open state. Combining DNaseI accessibility and chromatin immunoprecipitation with high-throughput sequencing, we identify the activator protein 1 (AP1) as a major partner for productive GR-chromatin interactions. AP1 is critical for GR-regulated transcription and recruitment to co-occupied regulatory elements, illustrating an extensive AP1-GR interaction network. Importantly, the maintenance of baseline chromatin accessibility facilitates GR recruitment and is dependent on AP1 binding. We propose a model in which the basal occupancy of transcription factors acts to prime chromatin and direct inducible transcription factors to select regions in the genome.


Cell | 2011

Dynamic Exchange at Regulatory Elements during Chromatin Remodeling Underlies Assisted Loading Mechanism

Ty C. Voss; R. Louis Schiltz; Myong Hee Sung; Paul M. Yen; John A. Stamatoyannopoulos; Simon C. Biddie; Thomas A. Johnson; Tina B. Miranda; Sam John; Gordon L. Hager

The glucocorticoid receptor (GR), like other eukaryotic transcription factors, regulates gene expression by interacting with chromatinized DNA response elements. Photobleaching experiments in living cells indicate that receptors transiently interact with DNA on the time scale of seconds and predict that the response elements may be sparsely occupied on average. Here, we show that the binding of one receptor at the glucocorticoid response element (GRE) does not reduce the steady-state binding of another receptor variant to the same GRE. Mathematical simulations reproduce this noncompetitive state using short GR/GRE residency times and relatively long times between DNA binding events. At many genomic sites where GR binding causes increased chromatin accessibility, concurrent steady-state binding levels for the variant receptor are actually increased, a phenomenon termed assisted loading. Temporally sparse transcription factor-DNA interactions induce local chromatin reorganization, resulting in transient access for binding of secondary regulatory factors.


Cell | 2011

Polycomb-Repressed Genes Have Permissive Enhancers that Initiate Reprogramming

Phillippa C. Taberlay; Theresa K. Kelly; Chun-Chi Liu; Jueng Soo You; Daniel D. De Carvalho; Tina B. Miranda; Xianghong Jasmine Zhou; Gangning Liang; Peter A. Jones

Key regulatory genes, suppressed by Polycomb and H3K27me3, become active during normal differentiation and induced reprogramming. Using the well-characterized enhancer/promoter pair of MYOD1 as a model, we have identified a critical role for enhancers in reprogramming. We observed an unexpected nucleosome-depleted region (NDR) at the H3K4me1-enriched enhancer at which transcriptional regulators initially bind, leading to subsequent changes in the chromatin at the cognate promoter. Exogenous Myod1 activates its own transcription by binding first at the enhancer, leading to an NDR and transcription-permissive chromatin at the associated MYOD1 promoter. Exogenous OCT4 also binds first to the permissive MYOD1 enhancer but has a different effect on the cognate promoter, where the monovalent H3K27me3 marks are converted to the bivalent state characteristic of stem cells. Genome-wide, a high percentage of Polycomb targets are associated with putative enhancers in permissive states, suggesting that they may provide a widespread avenue for the initiation of cell-fate reprogramming.


Molecular Cell | 2010

H2A.Z Maintenance during Mitosis Reveals Nucleosome Shifting on Mitotically Silenced Genes

Theresa K. Kelly; Tina B. Miranda; Gangning Liang; Benjamin P. Berman; Joy C. Lin; Amos Tanay; Peter A. Jones

Profound chromatin changes occur during mitosis to allow for gene silencing and chromosome segregation followed by reactivation of memorized transcription states in daughter cells. Using genome-wide sequencing, we found H2A.Z-containing +1 nucleosomes of active genes shift upstream to occupy TSSs during mitosis, significantly reducing nucleosome-depleted regions. Single-molecule analysis confirmed nucleosome shifting and demonstrated that mitotic shifting is specific to active genes that are silenced during mitosis and, thus, is not seen on promoters, which are silenced by methylation or mitotically expressed genes. Using the GRP78 promoter as a model, we found H3K4 trimethylation is also maintained while other indicators of active chromatin are lost and expression is decreased. These key changes provide a potential mechanism for rapid silencing and reactivation of genes during the cell cycle.


Cancer Research | 2013

Reprogramming the Chromatin Landscape: Interplay of the Estrogen and Glucocorticoid Receptors at the Genomic Level

Tina B. Miranda; Ty C. Voss; Myong-Hee Sung; Songjoon Baek; Sam John; Mary Hawkins; Lars Grøntved; R. Louis Schiltz; Gordon L. Hager

Cross-talk between estrogen receptors (ER) and glucocorticoid receptors (GR) has been shown to contribute to the development and progression of breast cancer. Importantly, the ER and GR status in breast cancer cells is a significant factor in determining the outcome of the disease. However, mechanistic details defining the cellular interactions between ER and GR are poorly understood. We investigated genome-wide binding profiles for ER and GR upon coactivation and characterized the status of the chromatin landscape. We describe a novel mechanism dictating the molecular interplay between ER and GR. Upon induction, GR modulates access of ER to specific sites in the genome by reorganization of the chromatin configuration for these elements. Binding to these newly accessible sites occurs either by direct recognition of ER response elements or indirectly through interactions with other factors. The unveiling of this mechanism is important for understanding cellular interactions between ER and GR and may represent a general mechanism for cross-talk between nuclear receptors in human disease.


Genome Research | 2015

Dynamics of chromatin accessibility and long-range interactions in response to glucocorticoid pulsing

Diana A. Stavreva; Antoine Coulon; Songjoon Baek; Myong Hee Sung; Sam John; Lenka Stixová; Martina Tesikova; Ofir Hakim; Tina B. Miranda; Mary Hawkins; John A. Stamatoyannopoulos; Carson C. Chow; Gordon L. Hager

Although physiological steroid levels are often pulsatile (ultradian), the genomic effects of this pulsatility are poorly understood. By utilizing glucocorticoid receptor (GR) signaling as a model system, we uncovered striking spatiotemporal relationships between receptor loading, lifetimes of the DNase I hypersensitivity sites (DHSs), long-range interactions, and gene regulation. We found that hormone-induced DHSs were enriched within ± 50 kb of GR-responsive genes and displayed a broad spectrum of lifetimes upon hormone withdrawal. These lifetimes dictate the strength of the DHS interactions with gene targets and contribute to gene regulation from a distance. Our results demonstrate that pulsatile and constant hormone stimulations induce unique, treatment-specific patterns of gene and regulatory element activation. These modes of activation have implications for corticosteroid function in vivo and for steroid therapies in various clinical settings.


Molecular and Cellular Endocrinology | 2013

Complex genomic interactions in the dynamic regulation of transcription by the glucocorticoid receptor

Tina B. Miranda; Stephanie A Morris; Gordon L. Hager

The glucocorticoid receptor regulates transcriptional output through complex interactions with the genome. These events require continuous remodeling of chromatin, interactions of the glucocorticoid receptor with chaperones and other accessory factors, and recycling of the receptor by the proteasome. Therefore, the cohort of factors expressed in a particular cell type can determine the physiological outcome upon treatment with glucocorticoid hormones. In addition, circadian and ultradian cycling of hormones can also affect GR response. Here we will discuss revision of the classical static model of GR binding to response elements to incorporate recent findings from single cell and genome-wide analyses of GR regulation. We will highlight how these studies have changed our views on the dynamics of GR recruitment and its modulation of gene expression.


FEBS Journal | 2011

Control of nuclear receptor function by local chromatin structure

Malgorzata Wiench; Tina B. Miranda; Gordon L. Hager

Steroid hormone receptors regulate gene transcription in a highly tissue‐specific manner. The local chromatin structure underlying promoters and hormone response elements is a major component involved in controlling these highly restricted expression patterns. Chromatin remodeling complexes, as well as histone and DNA modifying enzymes, are directed to gene‐specific regions and create permissive or repressive chromatin environments. These structures further enable proper communication between transcription factors, co‐regulators and basic transcription machinery. The regulatory elements active at target genes can be either constitutively accessible to receptors or subject to rapid receptor‐dependent modification. The chromatin states responsible for these processes are in turn determined during development and differentiation. Thus access of regulatory factors to elements in chromatin provides a major level of cell selective regulation.

Collaboration


Dive into the Tina B. Miranda's collaboration.

Top Co-Authors

Avatar

Gordon L. Hager

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sam John

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

R. Louis Schiltz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Songjoon Baek

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Theresa K. Kelly

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Ty C. Voss

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gangning Liang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Myong Hee Sung

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge