Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tina Di Palma is active.

Publication


Featured researches published by Tina Di Palma.


Journal of Biological Chemistry | 2003

The Paired Domain-containing Factor Pax8 and the Homeodomain-containing Factor TTF-1 Directly Interact and Synergistically Activate Transcription

Tina Di Palma; Roberto Nitsch; Anna Mascia; Lucio Nitsch; Roberto Di Lauro; Mariastella Zannini

Pax genes encode for transcription factors essential for tissue development in many species. Pax8, the only member of the family expressed in the thyroid tissue, is involved in the morphogenesis of the gland and in the transcriptional regulation of thyroid-specific genes. TTF-1, a homeodomain-containing factor, is also expressed in the thyroid tissue and has been demonstrated to play a role in thyroid-specific gene expression. Despite the presence of Pax8 and TTF-1 also in a few other tissues, the simultaneous expression of the two transcription factors occurs only in the thyroid, supporting the idea that Pax8 and TTF-1 might cooperate to influence thyroid-specific gene expression. In this report, we describe a physical and functional interaction between these two factors. The fusion protein GST-Pax8 is able to bind TTF-1 present in thyroid or in non-thyroid cell extracts, and by using bacterial purified TTF-1 we demonstrate that the interaction is direct. By co-immunoprecipitation, we also show that the interaction between the two proteins occursin vivo in thyroid cells. Moreover, Pax8 and TTF-1 when co-expressed in HeLa cells synergistically activate Tg gene transcription. The synergism requires the N-terminal activation domain of TTF-1, and deletions of Pax8 indicate that the C-terminal domain of the protein is involved. Our results demonstrate a functional cooperation and a physical interaction between transcription factors of the homeodomain-containing and of the paired domain-containing gene families in the regulation of tissue-specific gene expression.


Experimental Cell Research | 2009

TAZ is a coactivator for Pax8 and TTF-1, two transcription factors involved in thyroid differentiation.

Tina Di Palma; Barbara D'Andrea; Giovanna L. Liguori; Annamaria Liguoro; Tiziana de Cristofaro; Dolores Del Prete; Andrea Pappalardo; Anna Mascia; Mariastella Zannini

Pax8 and TTF-1 are transcription factors involved in the morphogenesis of the thyroid gland and in the transcriptional regulation of thyroid-specific genes. Both proteins are expressed in few tissues but their simultaneous presence occurs only in the thyroid where they interact physically and functionally allowing the regulation of genes that are markers of the thyroid differentiated phenotype. TAZ is a transcriptional coactivator that regulates the activity of several transcription factors therefore playing a central role in tissue-specific transcription. The recently demonstrated physical and functional interaction between TAZ and TTF-1 in the lung raised the question of whether TAZ could be an important regulatory molecule also in the thyroid. In this study, we demonstrate the presence of TAZ in thyroid cells and the existence of an important cooperation between TAZ and the transcription factors Pax8 and TTF-1 in the modulation of thyroid gene expression. In addition, we reveal that the three proteins are co-expressed in the nucleus of differentiated thyroid cells and that TAZ interacts with both Pax8 and TTF-1, in vitro and in vivo. More importantly, we show that this interaction leads to a significant enhancement of the transcriptional activity of Pax8 and TTF-1 on the thyroglobulin promoter thus suggesting a role of TAZ in the control of genes involved in thyroid development and differentiation.


European Journal of Cancer | 2011

TAZ/WWTR1 is overexpressed in papillary thyroid carcinoma

Tiziana de Cristofaro; Tina Di Palma; Angelo Ferraro; Alessia Corrado; Valeria Lucci; Renato Franco; Alfredo Fusco; Mariastella Zannini

In this study, we analysed the expression of the transcriptional coactivator TAZ (transcriptional co-activator with PDZ-binding motif), also named WWTR1, in a panel of papillary thyroid carcinoma samples and we observed a significant deregulation of its expression in such tumours. Specifically, by quantitative real-time PCR (qRT-PCR) we evaluated TAZ mRNA levels in tissue specimens (n=61) of papillary thyroid carcinoma (PTC) and herein we show that the PTC samples express much higher TAZ mRNA levels with respect to the normal thyroid tissue (p<0.001). TAZ expression was also evaluated in normal (n=10) and pathological human thyroids (n=17) by immunohistochemical analysis and the increase of TAZ protein levels in PTC was confirmed. To further analyse the molecular mechanisms underlying TAZ overexpression in PTC, we used an inducible system consisting of FRTL-5 rat thyroid cells expressing a conditional RAS oncoprotein and we show that the activation of the RAS signalling pathway is involved in TAZ deregulation. These observations suggest that the activated effectors of the RAS/RAF/MEK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) signalling pathway are involved in the increased expression of TAZ, supporting the idea that this may also occur in thyroid papillary carcinoma. Moreover, we demonstrated that the overexpression of TAZ is able to confer growth advantage to thyroid cells in culture and to induce epithelial-mesenchymal transition. In conclusion, these findings support a potential role for TAZ in the pathogenesis of papillary thyroid carcinomas.


Clinical Endocrinology | 2010

Characterization of a novel loss-of-function mutation of PAX8 associated with congenital hypothyroidism

Tina Di Palma; Emilia Zampella; Maria Grazia Filippone; Paolo Emidio Macchia; Carrie Ris-Stalpers; Monique A.M.J. de Vroede; Mariastella Zannini

Background  Congenital hypothyroidism (CH) is a common endocrine disease that occurs in about 1:3000 newborns. In 80–85% of the cases, CH is presumably secondary to thyroid dysgenesis (TD), a defect in the organogenesis of the gland leading to an ectopic (30–45%), absent (agenesis, 35–40%) or hypoplastic (5%) thyroid gland. The pathogenesis of TD is still largely unknown. Most cases of TD are sporadic, although familial occurrences have occasionally been described. Recently, mutations in the PAX8 transcription factor have been identified in patients with TD.


PLOS ONE | 2011

Identification of Novel Pax8 Targets in FRTL-5 Thyroid Cells by Gene Silencing and Expression Microarray Analysis

Tina Di Palma; Anna Conti; Tiziana de Cristofaro; Serena Scala; Lucio Nitsch; Mariastella Zannini

Background The differentiation program of thyroid follicular cells (TFCs), by far the most abundant cell population of the thyroid gland, relies on the interplay between sequence-specific transcription factors and transcriptional coregulators with the basal transcriptional machinery of the cell. However, the molecular mechanisms leading to the fully differentiated thyrocyte are still the object of intense study. The transcription factor Pax8, a member of the Paired-box gene family, has been demonstrated to be a critical regulator required for proper development and differentiation of thyroid follicular cells. Despite being Pax8 well-characterized with respect to its role in regulating genes involved in thyroid differentiation, genomics approaches aiming at the identification of additional Pax8 targets are lacking and the biological pathways controlled by this transcription factor are largely unknown. Methodology/Principal Findings To identify unique downstream targets of Pax8, we investigated the genome-wide effect of Pax8 silencing comparing the transcriptome of silenced versus normal differentiated FRTL-5 thyroid cells. In total, 2815 genes were found modulated 72 h after Pax8 RNAi, induced or repressed. Genes previously reported to be regulated by Pax8 in FRTL-5 cells were confirmed. In addition, novel targets genes involved in functional processes such as DNA replication, anion transport, kinase activity, apoptosis and cellular processes were newly identified. Transcriptome analysis highlighted that Pax8 is a key molecule for thyroid morphogenesis and differentiation. Conclusions/Significance This is the first large-scale study aimed at the identification of new genes regulated by Pax8, a master regulator of thyroid development and differentiation. The biological pathways and target genes controlled by Pax8 will have considerable importance to understand thyroid disease progression as well as to set up novel therapeutic strategies.


Endocrinology | 2010

A Locus on Mouse Chromosome 2 Is Involved in Susceptibility to Congenital Hypothyroidism and Contains an Essential Gene Expressed in Thyroid

Elena Amendola; Remo Sanges; Antonella Galvan; Nina Dathan; Giacomo Manenti; Giuseppe Ferrandino; Francesca Maria Alvino; Tina Di Palma; Marzia Scarfò; Mariastella Zannini; Tommaso A. Dragani; Mario De Felice; Roberto Di Lauro

We report here the mapping of a chromosomal region responsible for strain-specific development of congenital hypothyroidism in mice heterozygous for null mutations in genes encoding Nkx2-1/Titf1 and Pax8. The two strains showing a differential predisposition to congenital hypothyroidism contain several single-nucleotide polymorphisms in this locus, one of which leads to a nonsynonymous amino acid change in a highly conserved region of Dnajc17, a member of the type III heat-shock protein-40 (Hsp40) family. We demonstrate that Dnajc17 is highly expressed in the thyroid bud and had an essential function in development, suggesting an important role of this protein in organogenesis and/or function of the thyroid gland.


Biochemical Journal | 2004

WBP-2, a WW domain binding protein, interacts with the thyroid-specific transcription factor Pax8.

Roberto Nitsch; Tina Di Palma; Anna Mascia; Mariastella Zannini

The Pax gene family encodes transcription factors that are essential in organogenesis and in the differentiation of various organs in higher eukaryotes. Pax proteins have a DNA binding domain at the N-terminus, and a transcriptional activation domain at the C-terminus. How these domains interact with the transcriptional machinery of the cell is still unclear. In the present paper, we describe the identification by means of immunological screening of the WW domain binding protein WBP-2 as a biochemical interactor of Pax8 (a WW domain is a protein-interaction domain containing two conserved tryptophan residues). Pax8 is required for the morphogenesis of the thyroid gland and for the maintenance of the thyroid differentiated cellular phenotype. WBP-2 was identified originally as a WW domain binding protein, and its function is still unknown. WBP-2 binds to Pax8 in vitro in pulldown assays, and in vivo in tissue culture cells in co-immunoprecipitation assays. Interestingly, Pax8 does not contain a WW domain. Our results point to the identification of a new protein-interacting domain that is present in the C-terminal portion of Pax8 and that is required for protein-protein interaction with WBP-2. Our results demonstrate that WBP-2 is not a transcriptional co-activator of Pax8, but rather behaves as an adaptor molecule, as suggested in other studies.


BMC Cancer | 2014

A role for PAX8 in the tumorigenic phenotype of ovarian cancer cells

Tina Di Palma; Valeria Lucci; Tiziana de Cristofaro; Maria Grazia Filippone; Mariastella Zannini

BackgroundPAX8 is a member of the paired box (Pax) multigene family of transcription factors, which are involved in the developmental and tissue-specific control of the expression of several genes in both vertebrates and invertebrates. Previously, several studies reported that PAX8 is expressed at high levels in specific types of tumors. In particular, PAX8 has been recently reported to be conspicuously expressed in human ovarian cancer, but the functional role of PAX8 in the carcinogenesis of this type of tumor has not been addressed. In this study, we investigated the contribution of PAX8 in ovarian cancer progression.MethodsStable PAX8 depleted ovarian cancer cells were generated using short hairpin RNA (shRNA) constructs. PAX8 mRNA and protein were detected by RT-PCR, immunoblot and immunofluorescence. Cell proliferation, motility and invasion potential of PAX8 silenced cells were analyzed by means of growth curves, wound healing and Matrigel assays. In addition, PAX8 knockdown and control cells were injected into nude mice for xenograft tumorigenicity assays. Finally, qPCR was used to detect the expression levels of EMT markers in PAX8-overexpressing and control cells.ResultsHere, we show that PAX8 plays a critical role in the migration, invasion and tumorigenic ability of ovarian cancer cells. Our results show that RNA interference-mediated knockdown of PAX8 expression in SKOV-3 ovarian cancer cells produces a significant reduction of cell proliferation, migration ability and invasion activity compared with control parental SKOV-3 cells. Moreover, PAX8 silencing strongly suppresses anchorage-independent growth in vitro. Notably, tumorigenesis in vivo in a nude mouse xenograft model is also significantly inhibited.ConclusionsOverall, our results indicate that PAX8 plays an important role in the tumorigenic phenotype of ovarian cancer cells and identifies PAX8 as a potential new target for the treatment of ovarian cancer.


Molecular Endocrinology | 2012

An Essential Role for Pax8 in the Transcriptional Regulation of Cadherin-16 in Thyroid Cells

Tiziana de Cristofaro; Tina Di Palma; Imma Fichera; Valeria Lucci; Luca Parrillo; Mario De Felice; Mariastella Zannini

Cadherin-16 was originally identified as a tissue-specific cadherin present exclusively in kidney. Only recently, Cadherin-16 has been detected also on the plasma membrane of mouse thyrocytes. This last finding prompted us to note that the expression profile of Cadherin-16 resembles that of the transcription factor Pax8, a member of the Pax (paired-box) gene family, predominantly expressed in the developing and adult kidney and thyroid. Pax8 has been extensively characterized in the thyroid and shown to be a master gene for thyroid development and differentiation. In this study, we determined the role of the transcription factor Pax8 in the regulation of Cadherin-16 expression. We demonstrate that the Cadherin-16 minimal promoter is transcriptionally active in thyroid cells as well as in kidney cells, that Pax8 is able to activate transcription from a Cadherin-16 promoter reporter construct, and more importantly, that indeed Pax8 is able to bind in vivo the Cadherin-16 promoter region. In addition, by means of Pax8 RNA interference in thyroid cells and by analyzing Pax8 null mice, we demonstrate that Pax8 regulates also in vivo the expression of Cadherin-16. Finally, we reveal that the expression of Cadherin-16 is TSH dependent in FRTL-5 thyroid cells and significantly reduced in mouse thyroid carcinomas. Therefore, we conclude that Cadherin-16 is a novel downstream target of the transcription factor Pax8, likely since the early steps of thyroid development, and that its expression is associated with the fully differentiated state of the thyroid cell.


Journal of Molecular Endocrinology | 2008

Poly(ADP-ribose) polymerase 1 binds to Pax8 and inhibits its transcriptional activity.

Tina Di Palma; Tiziana de Cristofaro; Chiara D'Ambrosio; Dolores Del Prete; Andrea Scaloni; Mariastella Zannini

Pax8 is a transcription factor that plays an important role in the regulation of genes that are exclusively expressed in differentiated thyroid cells. In the thyroid cell environment, evidence exists that Pax8 is part of a multiprotein complex in which its transcriptional activity may be modulated by specific co-factors. In an attempt to identify proteins that interact with Pax8, we performed pull-down experiments challenging the GST-Pax8 fusion protein with protein extracts prepared from the thyroid differentiated cell line PC Cl3. By this approach, we isolated a 113-kDa protein that is able to associate with Pax8, which was further identified by mass fingerprint experiments as poly(ADP-ribose) polymerase 1 (PARP1). To further confirm this interaction, we also showed that PARP1 can be co-immunoprecipitated with Pax8 in vivo from a thyroid cell extract. Gel shifts experiments demonstrated that PARP1 binding to Pax8 significantly inhibits Pax8 binding to DNA. Accordingly, we provide evidence that the functional outcome of such an interaction is a significant downregulation of Pax8 transcriptional activity. In the context of thyroid-specific gene transcription, our results suggest that PARP1 behaves as an important negative co-factor involved in the regulation of Pax8-dependent gene expression.

Collaboration


Dive into the Tina Di Palma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valeria Lucci

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Anna Mascia

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Lucio Nitsch

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Nitsch

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Roberto Di Lauro

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Andrea Scaloni

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge