Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tina Kosjek is active.

Publication


Featured researches published by Tina Kosjek.


Water Research | 2008

Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors

Barbara Kraigher; Tina Kosjek; Ester Heath; Boris Kompare; Ines Mandic-Mulec

Concern is growing over contamination of the environment with pharmaceuticals because of their widespread use and incomplete removal during wastewater treatment, where microorganisms drive the key processes. The influence of pharmaceuticals on bacterial community structure in activated sludge was assessed in small-scale wastewater treatment bioreactors containing different concentrations (5, 50, 200 and 500microgL(-1)) of several commonly used pharmaceuticals (ibuprofen, naproxen, ketoprofen, diclofenac and clofibric acid). T-RFLP analyses of the bacterial 16S rRNA genes indicated a minor but consistent shift in the bacterial community structure in the bioreactor R50 supplied with pharmaceuticals at a concentration of 50microgL(-1), compared to the control reactor R0, which was operated without addition of pharmaceuticals. In the reactors operated with higher concentrations of pharmaceuticals, a greater structural divergence was observed. Bacterial community composition was further investigated by preparation of two clone libraries of bacterial 16S rRNA genes from reactors R0 and R50. Most clones in both libraries belonged to the Betaproteobacteria, among which Thauera, Sphaerotilus, Ideonella and Acidovorax-related spp. dominated. Nitrite-oxidizing bacteria of the genus Nitrospira sp., which are key organisms for the second stage of nitrification in wastewater treatment plants, were found only in the clone library of the reactor without pharmaceuticals. In addition, diversity indices were calculated for the two clone libraries, indicating a reduced diversity of activated sludge bacterial community in the reactor supplied with 50microgL(-1) of each of selected pharmaceuticals.


Ultrasonics Sonochemistry | 2013

Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment

Mojca Zupanc; Tina Kosjek; Martin Petkovšek; Matevž Dular; Boris Kompare; Brane Širok; Željko Blažeka; Ester Heath

To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment resulted in removal efficiencies of >90% for clofibric acid and >98% for carbamazepine and diclofenac, while the remaining compounds were reduced to levels below the LOD. For ibuprofen, naproxen, ketoprofen and diclofenac the highest contribution to overall removal was attributed to biological treatment, for clofibric acid UV treatment was the most efficient, while for carbamazepine hydrodynamic cavitation/hydrogen peroxide process and UV treatment were equally efficient.


Science of The Total Environment | 2013

Ecotoxicity of carbamazepine and its UV photolysis transformation products

Erica Donner; Tina Kosjek; Signe Qualmann; Kresten Ole Kusk; Ester Heath; D. Michael Revitt; Anna Ledin; Henrik Rasmus Andersen

Carbamazepine, an anti-epileptic pharmaceutical agent commonly found in wastewater, is highly recalcitrant to standard wastewater treatment practices. This study investigated the mixture toxicity of carbamazepine transformation products formed during ultraviolet (UV) photolysis using three standard ecotoxicity assays (representing bacteria, algae and crustaceans). UV-treatment of 6 mg L(-1) carbamazepine solution was carried out over a 120 min period and samples were removed periodically over the course of the experiment. Quantification results confirmed the degradation of carbamazepine throughout the treatment period, together with concurrent increases in acridine and acridone concentrations. Ecotoxicity was shown to increase in parallel with carbamazepine degradation indicating that the mixture of degradation products formed was more toxic than the parent compound, and all three ecotoxicity endpoints were still inhibited >60% relative to control populations upon dosing with 90+min UV-treated carbamazepine solution. Single compound toxicity testing also confirmed the higher toxicity of measured degradation products relative to the parent compound. These results show that transformation products considerably more toxic than carbamazepine itself may be produced during UV-treatment of wastewater effluents and/or photo-induced degradation of carbamazepine in natural waters. This study highlights the need to consider mixture toxicity and the formation and persistence of toxicologically relevant transformation products when assessing the environmental risks posed by pharmaceutical compounds.


Journal of Chromatography A | 2013

Fluorouracil in the environment: Analysis, occurrence, degradation and transformation

Tina Kosjek; Silva Perko; Dušan Žigon; Ester Heath

5-Fluorouracil (5-FU) is a fluorinated pyrimidine analogue important in the treatment of cancer whose fate in the environment is yet to be fully addressed. Due to its high polarity 5-FU requires challenging sample preparation and therefore we thoroughly investigated different solid phase extraction mechanisms (ion pair, ion exchange, reversed phase), sorbents and derivatisation agents to enable trace-level analysis of 5-FU based on GC-MS/MS in natural and wastewaters. Ion pair and ion exchange retention mechanisms enable the extraction of 5-FU from deionised water, but were inappropriate for complex environmental matrices, where the reversed phase sorbent Isolute ENV+ gave the best extraction efficiencies (53% and 93% for wastewaters and surface waters, respectively). Further, alkylation was rejected in favour of silylation with MTBSTFA. The achieved limits of quantification (LOQ) for waste and surface waters were 1.6 ng/L and 0.54 ng/L, respectively. The method was used to analyse samples of hospital, wastewater treatment plant influent and effluent and surface waters. 5-FU was quantified in four out of the twelve samples of oncological ward wastewaters and municipal wastewater treatment plant influents in concentrations from 4.7 ng/L to 92 ng/L. This work is also the first to study the environmental transformation of 5-FU and its prodrug capecitabine (CAP). Their removal and transformation was simulated using a series of biodegradation and photodegradation experiments, where 5-FU proved more degradable in comparison to CAP. Transformation of 5-FU and CAP was studied by using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-QqTOF). Overall, six transformation products for 5-FU and ten for CAP are proposed; 13 of these are to our knowledge published for the first time.


Water Research | 2012

Environmental occurrence, fate and transformation of benzodiazepines in water treatment

Tina Kosjek; S. Perko; Mojca Zupanc; M. Zanoški Hren; T. Landeka Dragičević; D. Žigon; Boris Kompare; Ester Heath

Benzodiazepine derivatives are prescribed in large quantities globally and are potentially new emerging environmental contaminants. Unfortunately, a dearth of data exists concerning occurrence, persistence and fate in the environment. This paper redresses this by reviewing existing literature, assessing the occurrence of selected benzodiazepine anxiolytics (diazepam, oxazepam and bromazepam) in wastewater influent and effluent and surface water from Slovenia, evaluating their removal during water treatment and identifying the transformation products formed during water treatment. Their occurrence was monitored in hospital effluent, river water and in wastewater treatment plant influent and effluent. The study reveals the presence of benzodiazepine derivatives in all samples with the highest amounts in hospital effluents: 111 ng L(-1), 158 ng L(-1) and 72 ng L(-1) for diazepam, bromazepam and oxazepam, respectively. Removal efficiencies with respect to biological treatment of diazepam were 16-18% (oxic), 18-32% (anoxic→oxic), 53-76% (oxic→anoxic) and 83% (oxic→anoxic→oxic→anoxic cascade bioreactors), while the removal oxazepam was 20-24% under anoxic conditions. Coupled biological and photochemical treatment followed by the adsorption to activated carbon resulted in a removal efficiency of 99.99%. Results reveal the recalcitrant nature of benzodiazepine derivatives and suggest that only combinational treatment is sufficient to remove them. In addition, eight novel diazepam and four novel oxazepam transformation products are reported.


Ultrasonics Sonochemistry | 2016

Use of hydrodynamic cavitation in (waste)water treatment.

Matevž Dular; Tjaša Griessler-Bulc; Ion Gutiérrez-Aguirre; Ester Heath; Tina Kosjek; Aleksandra Krivograd Klemenčič; Martina Oder; Martin Petkovšek; Nejc Rački; Maja Ravnikar; Andrej Šarc; Brane Širok; Mojca Zupanc; Miha Žitnik; Boris Kompare

The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented. In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater. As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants. The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning.


Analytical and Bioanalytical Chemistry | 2015

In vitro Phase I and Phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol

Noelia Negreira; Claudio Erratico; Tina Kosjek; Alexander L.N. van Nuijs; Ester Heath; Hugo Neels; Adrian Covaci

The aim of the present study was to identify the in vitro Phase I and Phase II metabolites of three new psychoactive substances: α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV), and methedrone, using human liver microsomes and human liver cytosol. Accurate-mass spectra of metabolites were obtained using liquid chromatography-quadrupole time-of-flight mass spectrometry. Six Phase I metabolites of α-PVP were identified, which were formed involving reduction, hydroxylation, and pyrrolidine ring opening reactions. The lactam compound was the major metabolite observed for α-PVP. Two glucuronidated metabolites of α-PVP, not reported in previous in vitro studies, were further identified. MDPV was transformed into 10 Phase I metabolites involving reduction, hydroxylation, and loss of the pyrrolidine ring. Also, six glucuronidated and two sulphated metabolites were detected. The major metabolite of MDPV was the catechol metabolite. Methedrone was transformed into five Phase I metabolites, involving N- and O-demethylation, hydroxylation, and reduction of the ketone group. Three metabolites of methedrone are reported for the first time. In addition, the contribution of individual human CYP enzymes in the formation of the detected metabolites was investigated.


Journal of Chromatography A | 2008

The use of quadrupole-time-of-flight mass spectrometer for the elucidation of diclofenac biotransformation products in wastewater

Tina Kosjek; Dušan Žigon; Bogdan Kralj; Ester Heath

The work presented herein discusses the potential of liquid chromatography-quadrupole-time-of-flight mass spectrometry (QqToF-MS) for the chemical structure elucidation of pharmaceutical degradation products (DPs). The model compound, the nonsteroidal anti-inflammatory drug diclofenac was subjected to microbiological transformation in a laboratory scale pilot wastewater treatment plant (WWTP) and its transformation products were detected in the outlet samples. Their chemical structures were elucidated using the principal features of the instrument, i.e. high resolution, accurate mass and MS/MS capability. A hydroxy-diclofenac, a benzoquinone imine derivative and a nitro analogue of diclofenac were successfully identified. The final structural elucidation of the fourth transformation product was not successful. Overall, the study emphasises the capabilities and potential of quadrupole-time-of-flight mass spectrometer showing it to be a powerful tool in both structure elucidation and confirming the identity of environmental contaminants.


Ultrasonics Sonochemistry | 2014

Shear-induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater

Mojca Zupanc; Tina Kosjek; Martin Petkovšek; Matevž Dular; Boris Kompare; Brane Širok; Marjeta Stražar; Ester Heath

In this study, the removal of clofibric acid, ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac residues from wastewater, using a novel shear-induced cavitation generator has been systematically studied. The effects of temperature, cavitation time and H2O2 dose on removal efficiency were investigated. Optimisation (50°C; 15 min; 340 mg L(-1) of added H2O2) resulted in removal efficiencies of 47-86% in spiked deionised water samples. Treatment of actual wastewater effluents revealed that although matrix composition reduces removal efficiency, this effect can be compensated for by increasing H2O2 dose (3.4 g L(-1)) and prolonging cavitation time (30 min). Hydrodynamic cavitation has also been investigated as either a pre- or a post-treatment step to biological treatment. The results revealed a higher overall removal efficiency of recalcitrant diclofenac and carbamazepine, when hydrodynamic cavitation was used prior to as compared to post biological treatment i.e., 54% and 67% as compared to 39% and 56%, respectively. This is an important finding since diclofenac is considered as a priority substance to be included in the EU Water Framework Directive.


Journal of Mass Spectrometry | 2011

Application of complementary mass spectrometric techniques to the identification of ketoprofen phototransformation products.

Tina Kosjek; Silva Perko; Ester Heath; Bogdan Kralj; Dušan Žigon

Ketoprofen (KP) is a nonsteroidal anti-inflammatory drug, which during UV irradiation rapidly transforms into benzophenone derivatives. Such transformation products may occur after topical application of KP, which is then exposed to sunlight resulting in a photo-allergic reaction. These reactions are mediated by the benzophenone moiety independently of the amount of allergen. The same reactions will also occur during wastewater or drinking water treatment albeit their effect in the aqueous environment is yet to be ascertained. In addition, only a few such transformation products have been recognised. To enable the detection and structural elucidation of the widest range of KP transformation products, this study applies complementary chromatographic and mass spectrometric techniques including gas chromatography coupled to single quadrupole or ion trap mass spectrometry and liquid chromatography hyphenated with quadrupole-time-of-flight mass spectrometry. Based on structural information gained in tandem and multiple MS experiments, and on highly accurate molecular mass measurements, chemical structures of 22 transformation products are proposed and used to construct an overall breakdown pathway. Among the identified transformation products all but two compounds retained the benzophenone moiety--a result, which raises important issues concerning the possible toxic synergistic effects of KP and its transformation products. These findings trigger further research into water treatment technologies that would limit their entrance into environmental or drinking waters.

Collaboration


Dive into the Tina Kosjek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damià Barceló

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Henrik Rasmus Andersen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Anna Ledin

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Miren López de Alda

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Brane Širok

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar

Maja Cemazar

University of Primorska

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joan O. Grimalt

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marta Schuhmacher

Rovira i Virgili University

View shared research outputs
Researchain Logo
Decentralizing Knowledge