Tina Lamey
Sir Charles Gairdner Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tina Lamey.
Expert Review of Molecular Diagnostics | 2015
John Chiang; Tina Lamey; Terri McLaren; Jennifer A. Thompson; Hannah Montgomery; John De Roach
Next-generation sequencing, also known as massively paralleled sequencing, offers an unprecedented opportunity to study disease mechanisms of inherited retinal dystrophies: a dramatic change from a few years ago. The specific involvement of the retina and the manageable number of genes to sequence make inherited retinal dystrophies an attractive model to study genotype–phenotype correlations. Costs are reducing rapidly and the current overall mutation detection rate of approximately 60% offers real potential for personalized medicine and treatments. This report addresses the challenges ahead, which include: better understanding of the mutation mechanisms of syndromic genes in apparent non-syndromic patients; finding mutations in patients who have tested negative or inconclusive; better variant calling, especially for intronic and synonymous variants; more precise genotype–phenotype correlations and making genetic testing more broadly accessible.
Documenta Ophthalmologica | 2014
C. Crowley; Rachel L. Paterson; Tina Lamey; Terri McLaren; J.N. De Roach; Enid Chelva; Jane C. Khan
PurposeAbnormalities in the BEST1 gene have recently been recognised as causing autosomal recessive bestrophinopathy (ARB). ARB has been noted to have a variable phenotypic presentation, distinct from that of autosomal dominant Best vitelliform macular dystrophy (BVMD). Both conditions are associated with deposits in the retina, a reduced or absent electro-oculography (EOG) light rise, and the risk of developing angle-closure glaucoma. Herein, we describe the clinical and genetic characteristics of a young male diagnosed with ARB associated with angle-closure glaucoma resulting from a novel homozygous mutation in BEST1.MethodsAll research involved in this case adhered to the tenets of the Declaration of Helsinki. The proband underwent slitlamp examination, retinal autofluorescence imaging and optical coherence tomography after presenting with deteriorating vision. The findings prompted genetic testing with bi-directional DNA sequencing of coding and flanking intronic regions of BEST1. The proband’s family members were subsequently screened.ResultsA provisional diagnosis of ARB was made based on the findings of subretinal and schitic lesions on fundoscopy and retinal imaging, together with abnormal EOG and electroretinography. Genetic testing identified a novel homozygous mutation in BEST1, c.636+1 G>A. Family members were found to carry one copy of the mutation and had no clinical or electrophysiological evidence of disease. The proband was additionally diagnosed with angle-closure glaucoma requiring topical therapy, peripheral iridotomies and phacoemulsification.ConclusionsPhenotypic overlap, reduced penetrance, variable expressivity and the ongoing discovery of new forms of bestrophinopathies add to the difficulty in distinguishing these retinal diseases. All patients diagnosed with ARB or BVMD should be examined for narrow angles and glaucoma, given their frequent association with these conditions.
Clinical and Experimental Ophthalmology | 2013
John De Roach; Terri McLaren; Rachel L. Paterson; Emily C O'Brien; Ling Hoffmann; David A. Mackey; Alex W. Hewitt; Tina Lamey
Inherited retinal disease represents a significant cause of blindness and visual morbidity worldwide. With the development of emerging molecular technologies, accessible and well‐governed repositories of data characterising inherited retinal disease patients is becoming increasingly important. This manuscript introduces such a repository.
Advances in Experimental Medicine and Biology | 2010
Tina Lamey; Sarina Laurin; Enid Chelva; John De Roach
X-linked Retinoschisis is a leading cause of juvenile macular degeneration. Four Western Australian families affected by X-Linked Retinoschisis were analysed using DNA and clinical information from the Australian Inherited Retinal Disease (IRD) Register and DNA Bank. By direct sequencing of the RS1 gene, three genetic variants were identified; 52+1G > T, 289T > G and 416delA. 289T > G has not been previously reported and is likely to cause a substitution of a membrane binding residue (W92G) in the functional discoidin domain. All clinically diagnosed individuals showed typical electronegative ERGs. The 52+1G > T obligate carrier also recorded a bilaterally abnormal rod ERG and mildly abnormal photopic responses. mfERG trace arrays showed reduced response densities in the paramacular region extending futher temporally for each eye.
Molecular Genetics & Genomic Medicine | 2017
Jennifer A. Thompson; John De Roach; Terri McLaren; Hannah Montgomery; Ling Hoffmann; Isabella R. Campbell; Fred K. Chen; David A. Mackey; Tina Lamey
Leber congenital amaurosis (LCA) is a severe visual impairment responsible for infantile blindness, representing ~5% of all inherited retinal dystrophies. LCA encompasses a group of heterogeneous disorders, with 24 genes currently implicated in pathogenesis. Such clinical and genetic heterogeneity poses great challenges for treatment, with personalized therapies anticipated to be the best treatment candidates. Unraveling the individual genetic etiology of disease is a prerequisite for personalized therapies, and could identify potential treatment candidates, inform patient management, and discriminate syndromic forms of disease.
PLOS ONE | 2016
Danuta M. Sampson; David Alonso-Caneiro; Avenell L. Chew; Tina Lamey; Terri McLaren; John De Roach; Fred K. Chen
Purpose To present en face optical coherence tomography (OCT) images generated by graph-search theory algorithm-based custom software and examine correlation with other imaging modalities. Methods En face OCT images derived from high density OCT volumetric scans of 3 healthy subjects and 4 patients using a custom algorithm (graph-search theory) and commercial software (Heidelberg Eye Explorer software (Heidelberg Engineering)) were compared and correlated with near infrared reflectance, fundus autofluorescence, adaptive optics flood-illumination ophthalmoscopy (AO-FIO) and microperimetry. Results Commercial software was unable to generate accurate en face OCT images in eyes with retinal pigment epithelium (RPE) pathology due to segmentation error at the level of Bruch’s membrane (BM). Accurate segmentation of the basal RPE and BM was achieved using custom software. The en face OCT images from eyes with isolated interdigitation or ellipsoid zone pathology were of similar quality between custom software and Heidelberg Eye Explorer software in the absence of any other significant outer retinal pathology. En face OCT images demonstrated angioid streaks, lesions of acute macular neuroretinopathy, hydroxychloroquine toxicity and Bietti crystalline deposits that correlated with other imaging modalities. Conclusions Graph-search theory algorithm helps to overcome the limitations of outer retinal segmentation inaccuracies in commercial software. En face OCT images can provide detailed topography of the reflectivity within a specific layer of the retina which correlates with other forms of fundus imaging. Our results highlight the need for standardization of image reflectivity to facilitate quantification of en face OCT images and longitudinal analysis.
Clinical and Experimental Ophthalmology | 2015
Terri McLaren; John De Roach; Hannah Montgomery; Ling Hoffmann; Caitlyn Kap; Tina Lamey
Choroideremia is an X‐linked inherited chorioretinal disease known to be caused by mutations in the CHM gene. In this study, Australian families clinically diagnosed with choroideremia were genetically analysed for mutations in the CHM gene.
Australasian Physical & Engineering Sciences in Medicine | 2016
Emily Huynh; John De Roach; Terri McLaren; Jennifer A. Thompson; Hannah Montgomery; Caitlyn Kap; Ling Hoffmann; Tina Lamey
The assignment of pathogenicity to variants suspected of causing an inherited retinal disease and the subsequent creation of molecular genetic reports sent to clinical geneticists and ophthalmologists has traditionally been time-consuming and subject to error and ambiguity. The purpose of this paper is to describe a computer-assisted method we have developed for (1) assessment of the predicted pathogenicity of genetic variants identified in patients diagnosed with an inherited retinal disease and (2) the incorporation of these results into the Australian Inherited Retinal Disease Register and DNA Bank’s databases, for the production of molecular genetics reports. This method has significantly accelerated the assessment of variant pathogenicity prediction and subsequent patient report generation for the Australian Inherited Retinal Disease Register and DNA Bank, and has reduced the potential for human error. The principles described in this paper may be applied in any situation where genetic variants and patient information are stored in a well-organised database.
Stem Cell Research | 2018
Xiao Zhang; Dan Zhang; Shang-Chih Chen; Tina Lamey; Jennifer A. Thompson; Terri McLaren; John De Roach; Fred K. Chen; Samuel McLenachan
We report the generation of the human iPSC line LEIi004-A from a patient with late-onset non-syndromic retinitis pigmentosa caused by compound heterozygous mutations in the CLN3 gene. Reprogramming of primary dermal fibroblasts was performed using episomal plasmids containing OCT4, SOX2, KLF4, L-MYC, LIN28, shRNA for p53 and mir302/367 microRNA. To create a coisogenic control line, one CLN3 variant was corrected in the patient-iPSC using CRISPR/Cas9 gene editing to generate the iPSC line LEIi004-A-1.
Stem Cell Research | 2018
Xiao Zhang; Dan Zhang; Shang-Chih Chen; Tina Lamey; Jennifer A. Thompson; Terri McLaren; John De Roach; Fred K. Chen; Samuel McLenachan
The human iPSC line LEIi006-A was generated from dermal fibroblasts from a patient with retinitis pigmentosa using episomal plasmids containing OCT4, SOX2, KLF4, L-MYC, LIN28, mir302/367 microRNA and shRNA for p53. The iPSC cells carry compound heterozygous mutations (c.1892A > G and c.2548G > A) in the CRB1 gene. LEIi006-A expressed pluripotent stem cell markers, had a normal karyotype and could be differentiated into endoderm, mesoderm and ectodermal lineages, as well as retinal organoids.