Tina Marie Assi
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tina Marie Assi.
Journal of Public Health Management and Practice | 2010
Bruce Y. Lee; Shawn T. Brown; Philip C. Cooley; Maggie A. Potter; William D. Wheaton; Ronald E. Voorhees; Samuel Stebbins; John J. Grefenstette; Shanta M. Zimmer; Richard K. Zimmerman; Tina Marie Assi; Rachel R. Bailey; Diane K. Wagener; Donald S. Burke
BACKGROUND There remains substantial debate over the impact of school closure as a mitigation strategy during an influenza pandemic. The ongoing 2009 H1N1 influenza pandemic has provided an unparalleled opportunity to test interventions with the most up-to-date simulations. METHODS To assist the Allegheny County Health Department during the 2009 H1N1 influenza pandemic, the University of Pittsburgh Models of Infectious Disease Agents Study group employed an agent-based computer simulation model (ABM) of Allegheny County, Pennsylvania, to explore the effects of various school closure strategies on mitigating influenza epidemics of different reproductive rates (R0). RESULTS Entire school system closures were not more effective than individual school closures. Any type of school closure may need to be maintained throughout most of the epidemic (ie, at least 8 weeks) to have any significant effect on the overall serologic attack rate. In fact, relatively short school closures (ie, 2 weeks or less) may actually slightly increase the overall attack rate by returning susceptible students back into schools in the middle of the epidemic. Varying the illness threshold at which school closures are triggered did not seem to have substantial impact on the effectiveness of school closures, suggesting that short delays in closing schools should not cause concern. CONCLUSIONS School closures alone may not be able to quell an epidemic but, when maintained for at least 8 weeks, could delay the epidemic peak for up to a week, providing additional time to implement a second more effective intervention such as vaccination.
Vaccine | 2010
Bruce Y. Lee; Shawn T. Brown; George W. Korch; Philip C. Cooley; Richard K. Zimmerman; William D. Wheaton; Shanta M. Zimmer; John J. Grefenstette; Rachel R. Bailey; Tina Marie Assi; Donald S. Burke
In the fall 2009, the University of Pittsburgh Models of Infectious Disease Agent Study (MIDAS) team employed an agent-based computer simulation model (ABM) of the greater Washington, DC, metropolitan region to assist the Office of the Assistant Secretary of Public Preparedness and Response, Department of Health and Human Services, to address several key questions regarding vaccine allocation during the 2009 H1N1 influenza pandemic, including comparing a vaccinating children (i.e., highest transmitters)-first policy versus the Advisory Committee on Immunization Practices (ACIP)-recommended vaccinating at-risk individuals-first policy. Our study supported adherence to the ACIP (instead of a children-first policy) prioritization recommendations for the H1N1 influenza vaccine when vaccine is in limited supply and that within the ACIP groups, children should receive highest priority.
Clinical Infectious Diseases | 2009
Richard H. Beigi; Ann E. Wiringa; Rachel R. Bailey; Tina Marie Assi; Bruce Y. Lee
BACKGROUND The cost-effectiveness of maternal influenza immunization against laboratory-confirmed influenza has never been studied. The current 2009 H1N1 influenza pandemic provides a timely opportunity to perform such analyses. The study objective was to evaluate the cost-effectiveness of maternal influenza vaccination using both single- and 2-dose strategies against laboratory-confirmed influenza secondary to both seasonal epidemics and pandemic influenza outbreaks. METHODS A cost-effectiveness decision analytic model construct using epidemic and pandemic influenza characteristics from both the societal and third-party payor perspectives. A comparison was made between vaccinating all pregnant women in the United States versus not vaccinating pregnant women. Probabilistic (Monte Carlo) sensitivity analyses were also performed. The main outcome measures were incremental cost-effectiveness ratios (ICERs). RESULTS Maternal influenza vaccination using either the single- or 2-dose strategy is a cost-effective approach when influenza prevalence > or =7.5% and influenza-attributable mortality is > or =1.05% (consistent with epidemic strains). As the prevalence of influenza and/or the severity of the outbreak increases the incremental value of vaccination also increases. At a higher prevalence of influenza (> or =30%) the single-dose strategy demonstrates cost-savings while the 2-dose strategy remains highly cost-effective (ICER, < or =
Vaccine | 2010
Bruce Y. Lee; Bryan A. Norman; Tina Marie Assi; Sheng I. Chen; Rachel R. Bailey; Jayant Rajgopal; Shawn T. Brown; Ann E. Wiringa; Donald S. Burke
6787.77 per quality-adjusted life year). CONCLUSIONS Maternal influenza immunization is a highly cost-effective intervention at disease rates and severity that correspond to both seasonal influenza epidemics and occasional pandemics. These findings justify ongoing efforts to optimize influenza vaccination during pregnancy from an economic perspective.
Vaccine | 2012
Bruce Y. Lee; Brigid E. Cakouros; Tina Marie Assi; Diana L. Connor; Joel S. Welling; Souleymane Kone; Ali Djibo; Angela R. Wateska; Lionel Pierre; Shawn T. Brown
Single-dose vaccine formats can prevent clinic-level vaccine wastage but may incur higher production, medical waste disposal, and storage costs than multi-dose formats. To help guide vaccine developers, manufacturers, distributors, and purchasers, we developed a computational model to predict the potential economic impact of various single-dose versus multi-dose measles (MEA), hemophilus influenzae type B (Hib), Bacille Calmette-Guérin (BCG), yellow fever (YF), and pentavalent (DTP-HepB-Hib) vaccine formats. Lower patient demand favors fewer dose formats. The mean daily patient arrival thresholds for each vaccine format are as follows: for the MEA vaccine, 2 patients/day (below which the single-dose vial and above which the 10-dose vial are least costly); BCG vaccine, 6 patients/day (below, 10-dose vial; above, 20-dose vial); Hib vaccine, 5 patients/day (below, single-dose vial; above, 10-dose vial); YF vaccine, 33 patients/day (below, 5-dose vials; above 50-dose vial); and DTP-HepB-Hib vaccine, 5 patients/day (below, single-dose vial; above, 10-dose vial).
BMC Public Health | 2011
Tina Marie Assi; Shawn T. Brown; Ali Djibo; Bryan A. Norman; Jayant Rajgopal; Joel S. Welling; Sheng I. Chen; Rachel R. Bailey; Souleymane Kone; Hailu Kenea; Diana L. Connor; Angela R. Wateska; Anirban Jana; Stephen R. Wisniewski; Willem G. van Panhuis; Donald S. Burke; Bruce Y. Lee
OBJECTIVE Determine the effects on the vaccine cold chain of making different types of World Health Organization (WHO) Expanded Program on Immunizations (EPI) vaccines thermostable. METHODS Utilizing a detailed computational, discrete-event simulation model of the Niger vaccine supply chain, we simulated the impact of making different combinations of the six current EPI vaccines thermostable. FINDINGS Making any EPI vaccine thermostable relieved existing supply chain bottlenecks (especially at the lowest levels), increased vaccine availability of all EPI vaccines, and decreased cold storage and transport capacity utilization. By far, the most substantial impact came from making the pentavalent vaccine thermostable, increasing its own vaccine availability from 87% to 97% and the vaccine availabilities of all other remaining non-thermostable EPI vaccines to over 93%. By contrast, making each of the other vaccines thermostable had considerably less effect on the remaining vaccines, failing to increase the vaccine availabilities of other vaccines to more than 89%. Making tetanus toxoid vaccine along with the pentavalent thermostable further increased the vaccine availability of all EPI vaccines by at least 1-2%. CONCLUSION Our study shows the potential benefits of making any of Nigers EPI vaccines thermostable and therefore supports further development of thermostable vaccines. Eliminating the need for refrigerators and freezers should not necessarily be the only benefit and goal of vaccine thermostability. Rather, making even a single vaccine (or some subset of the vaccines) thermostable could free up significant cold storage space for other vaccines, and thereby help alleviate supply chain bottlenecks that occur throughout the world.
American Journal of Public Health | 2012
Bruce Y. Lee; Tina Marie Assi; Jayant Rajgopal; Bryan A. Norman; Sheng I. Chen; Shawn T. Brown; Rachel B. Slayton; Souleymane Kone; Hailu Kenea; Joel S. Welling; Diana L. Connor; Angela R. Wateska; Anirban Jana; Ann E. Wiringa; Willem G. van Panhuis; Donald S. Burke
BackgroundMany countries, such as Niger, are considering changing their vaccine vial size presentation and may want to evaluate the subsequent impact on their supply chains, the series of steps required to get vaccines from their manufacturers to patients. The measles vaccine is particularly important in Niger, a country prone to measles outbreaks.MethodsWe developed a detailed discrete event simulation model of the vaccine supply chain representing every vaccine, storage location, refrigerator, freezer, and transport device (e.g., cold trucks, 4 × 4 trucks, and vaccine carriers) in the Niger Expanded Programme on Immunization (EPI). Experiments simulated the impact of replacing the 10-dose measles vial size with 5-dose, 2-dose and 1-dose vial sizes.ResultsSwitching from the 10-dose to the 5-dose, 2-dose and 1-dose vial sizes decreased the average availability of EPI vaccines for arriving patients from 83% to 82%, 81% and 78%, respectively for a 100% target population size. The switches also changed transport vehicles utilization from a mean of 58% (range: 4-164%) to means of 59% (range: 4-164%), 62% (range: 4-175%), and 67% (range: 5-192%), respectively, between the regional and district stores, and from a mean of 160% (range: 83-300%) to means of 161% (range: 82-322%), 175% (range: 78-344%), and 198% (range: 88-402%), respectively, between the district to integrated health centres (IHC). The switch also changed district level storage utilization from a mean of 65% to means of 64%, 66% and 68% (range for all scenarios: 3-100%). Finally, accounting for vaccine administration, wastage, and disposal, replacing the 10-dose vial with the 5 or 1-dose vials would increase the cost per immunized patient from
Vaccine | 2013
Tina Marie Assi; Shawn T. Brown; Souleymane Kone; Bryan A. Norman; Ali Djibo; Diana L. Connor; Angela R. Wateska; Jayant Rajgopal; Rachel B. Slayton; Bruce Y. Lee
0.47US to
Vaccine | 2011
Jayant Rajgopal; Diana L. Connor; Tina Marie Assi; Bryan A. Norman; Sheng I. Chen; Rachel R. Bailey; Adrienne R. Long; Angela R. Wateska; Kristina M. Bacon; Shawn T. Brown; Donald S. Burke; Bruce Y. Lee
0.71US and
Vaccine | 2012
Tina Marie Assi; Korngamon Rookkapan; Jayant Rajgopal; Vorasith Sornsrivichai; Shawn T. Brown; Joel S. Welling; Bryan A. Norman; Diana L. Connor; Sheng I. Chen; Rachel B. Slayton; Yongjua Laosiritaworn; Angela R. Wateska; Stephen R. Wisniewski; Bruce Y. Lee
1.26US, respectively.ConclusionsThe switch from the 10-dose measles vaccines to smaller vial sizes could overwhelm the capacities of many storage facilities and transport vehicles as well as increase the cost per vaccinated child.