Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tina Xu is active.

Publication


Featured researches published by Tina Xu.


Current Biology | 2009

Cell Cycle Control by Physiological Matrix Elasticity and In Vivo Tissue Stiffening

Eric A. Klein; Liqun Yin; Devashish Kothapalli; Paola Castagnino; Fitzroy J. Byfield; Tina Xu; Ilya Levental; Elizabeth A. Hawthorne; Paul A. Janmey; Richard K. Assoian

BACKGROUND A number of adhesion-mediated signaling pathways and cell-cycle events have been identified that regulate cell proliferation, yet studies to date have been unable to determine which of these pathways control mitogenesis in response to physiologically relevant changes in tissue elasticity. In this report, we use hydrogel-based substrata matched to biological tissue stiffness to investigate the effects of matrix elasticity on the cell cycle. RESULTS We find that physiological tissue stiffness acts as a cell-cycle inhibitor in mammary epithelial cells and vascular smooth muscle cells; subcellular analysis in these cells, mouse embryonic fibroblasts, and osteoblasts shows that cell-cycle control by matrix stiffness is widely conserved. Remarkably, most mitogenic events previously documented as extracellular matrix (ECM)/integrin-dependent proceed normally when matrix stiffness is altered in the range that controls mitogenesis. These include ERK activity, immediate-early gene expression, and cdk inhibitor expression. In contrast, FAK-dependent Rac activation, Rac-dependent cyclin D1 gene induction, and cyclin D1-dependent Rb phosphorylation are strongly inhibited at physiological tissue stiffness and rescued when the matrix is stiffened in vitro. Importantly, the combined use of atomic force microscopy and fluorescence imaging in mice shows that comparable increases in tissue stiffness occur at sites of cell proliferation in vivo. CONCLUSIONS Matrix remodeling associated with pathogenesis is in itself a positive regulator of the cell cycle through a highly selective effect on integrin-dependent signaling to FAK, Rac, and cyclin D1.


Science Signaling | 2014

A FAK-Cas-Rac-Lamellipodin Signaling Module Transduces Extracellular Matrix Stiffness into Mechanosensitive Cell Cycling

Yong Ho Bae; Keeley L. Mui; Bernadette Y. Hsu; Shu-Lin Liu; Alexandra Cretu; Ziba Razinia; Tina Xu; Ellen Puré; Richard K. Assoian

A signaling pathway triggers cell proliferation in response to increased stiffness in the external environment. Cell Proliferation in Hard Environments The extracellular matrix that surrounds cells in tissues and organs is not always of the same rigidity. The stiffness of the extracellular matrix can be changed by disease or injury. In damaged blood vessels, the extracellular matrix becomes stiffer around the site of damage; the smooth muscle cells that surround blood vessels migrate and proliferate to repair the damage. Bae et al. identified a signaling pathway that included the enzyme Rac and the cell migration protein lamellipodin, and that triggered proliferation in cells growing on surfaces that mimicked very stiff extracellular matrix. Mice that lacked Rac in their smooth muscle cells did not efficiently repair damage to blood vessels. Thus, lamellipodin is important in not only regulating cellular migration, but also the cell cycle in response to mechanical cues from the extracellular matrix. Tissue and extracellular matrix (ECM) stiffness is transduced into intracellular stiffness, signaling, and changes in cellular behavior. Integrins and several of their associated focal adhesion proteins have been implicated in sensing ECM stiffness. We investigated how an initial sensing event is translated into intracellular stiffness and a biologically interpretable signal. We found that a pathway consisting of focal adhesion kinase (FAK), the adaptor protein p130Cas (Cas), and the guanosine triphosphatase Rac selectively transduced ECM stiffness into stable intracellular stiffness, increased the abundance of the cell cycle protein cyclin D1, and promoted S-phase entry. Rac-dependent intracellular stiffening involved its binding partner lamellipodin, a protein that transmits Rac signals to the cytoskeleton during cell migration. Our findings establish that mechanotransduction by a FAK-Cas-Rac-lamellipodin signaling module converts the external information encoded by ECM stiffness into stable intracellular stiffness and mechanosensitive cell cycling. Thus, lamellipodin is important not only in controlling cellular migration but also for regulating the cell cycle in response to mechanical signals.


Cell Reports | 2012

Cardiovascular protection by ApoE and ApoE-HDL linked to suppression of ECM gene expression and arterial stiffening.

Devashish Kothapalli; Shu-Lin Liu; Yong Ho Bae; James Monslow; Tina Xu; Elizabeth A. Hawthorne; Fitzroy J. Byfield; Paola Castagnino; Shilpa Rao; Daniel J. Rader; Ellen Puré; Michael C. Phillips; Sissel Lund-Katz; Paul A. Janmey; Richard K. Assoian

Arterial stiffening is a risk factor for cardiovascular disease, but how arteries stay supple is unknown. Here, we show that apolipoprotein E (apoE) and apoE-containing high-density lipoprotein (apoE-HDL) maintain arterial elasticity by suppressing the expression of extracellular matrix genes. ApoE interrupts a mechanically driven feed-forward loop that increases the expression of collagen-I, fibronectin, and lysyl oxidase in response to substratum stiffening. These effects are independent of the apoE lipid-binding domain and transduced by Cox2 and miR-145. Arterial stiffness is increased in apoE null mice. This stiffening can be reduced by administration of the lysyl oxidase inhibitor BAPN, and BAPN treatment attenuates atherosclerosis despite highly elevated cholesterol. Macrophage abundance in lesions is reduced by BAPN in vivo, and monocyte/macrophage adhesion is reduced by substratum softening in vitro. We conclude that apoE and apoE-containing HDL promote healthy arterial biomechanics and that this confers protection from cardiovascular disease independent of the established apoE-HDL effect on cholesterol.


Journal of Biological Chemistry | 2008

Differential activation of ERK and Rac mediates the proliferative and anti-proliferative effects of hyaluronan and CD44.

Devashish Kothapalli; James Flowers; Tina Xu; Ellen Puré; Richard K. Assoian

Hyaluronan, a widely distributed component of the extracellular matrix, exists in a high molecular weight (native) form and lower molecular weight form (HMW- and LMW-HA, respectively). These different forms of hyaluronan bind to CD44 but elicit distinct effects on cellular function. A striking example is the opposing effects of HMW- and LMW-HA on the proliferation of vascular smooth muscle cells; the binding of HMW-HA to CD44 inhibits cell cycle progression, whereas the binding of LMW-HA to CD44 stimulates cell cycle progression. We now report that cyclin D1 is the primary target of LMW-HA in human vascular smooth muscle cells, as it is for HMW-HA, and that the opposing cell cycle effects of these CD44 ligands result from differential regulation of signaling pathways to cyclin D1. HMW-HA binding to CD44 selectively inhibits the GTP loading of Rac and Rac-dependent signaling to the cyclin D1 gene, whereas LMW-HA binding to CD44 selectively stimulates ERK activation and ERK-dependent cyclin D1 gene expression. These data describe a novel mechanism of growth control in which a ligand-receptor system generates opposing effects on mitogenesis by differentially regulating signaling pathways to a common cell cycle target. They also emphasize how a seemingly subtle change in matrix composition can have a profound effect on cell proliferation.


Cell Reports | 2015

N-Cadherin Induction by ECM Stiffness and FAK Overrides the Spreading Requirement for Proliferation of Vascular Smooth Muscle Cells

Keeley L. Mui; Yong Ho Bae; Lin Gao; Shu-Lin Liu; Tina Xu; Glenn L. Radice; Christopher S. Chen; Richard K. Assoian

SUMMARY In contrast to the accepted pro-proliferative effect of cell-matrix adhesion, the proliferative effect of cadherin-mediated cell-cell adhesion remains unresolved. Here, we studied the effect of N-cadherin on cell proliferation in the vasculature. We show that N-cadherin is induced in smooth muscle cells (SMCs) in response to vascular injury, an in vivo model of tissue stiffening and proliferation. Complementary experiments performed with deformable substrata demonstrated that stiffness-mediated activation of a focal adhesion kinase (FAK)-p130Cas-Rac signaling pathway induces N-cadherin. Additionally, by culturing paired and unpaired SMCs on microfabricated adhesive islands of different areas, we found that N-cadherin relaxes the spreading requirement for SMC proliferation. In vivo SMC deletion of N-cadherin strongly reduced injury-induced cycling. Finally, SMC-specific deletion of FAK inhibited proliferation after vascular injury, and this was accompanied by reduced induction of N-cadherin. Thus, a stiffness-and FAK-dependent induction of N-cadherin connects cell-matrix to cell-cell adhesion and regulates the degree of cell spreading needed for cycling.


PLOS ONE | 2013

miR-221/222 Compensates for Skp2-Mediated p27 Degradation and Is a Primary Target of Cell Cycle Regulation by Prostacyclin and cAMP

Paola Castagnino; Devashish Kothapalli; Elizabeth A. Hawthorne; Shu-Lin Liu; Tina Xu; Shilpa Rao; Yuval Yung; Richard K. Assoian

p27kip1 (p27) is a cdk-inhibitory protein with an important role in the proliferation of many cell types. SCFSkp2 is the best studied regulator of p27 levels, but Skp2-mediated p27 degradation is not essential in vivo or in vitro. The molecular pathway that compensates for loss of Skp2-mediated p27 degradation has remained elusive. Here, we combine vascular injury in the mouse with genome-wide profiling to search for regulators of p27 during cell cycling in vivo. This approach, confirmed by RT-qPCR and mechanistic analysis in primary cells, identified miR-221/222 as a compensatory regulator of p27. The expression of miR221/222 is sensitive to proteasome inhibition with MG132 suggesting a link between p27 regulation by miRs and the proteasome. We then examined the roles of miR-221/222 and Skp2 in cell cycle inhibition by prostacyclin (PGI2), a potent cell cycle inhibitor acting through p27. PGI2 inhibited both Skp2 and miR221/222 expression, but epistasis, ectopic expression, and time course experiments showed that miR-221/222, rather than Skp2, was the primary target of PGI2. PGI2 activates Gs to increase cAMP, and increasing intracellular cAMP phenocopies the effect of PGI2 on p27, miR-221/222, and mitogenesis. We conclude that miR-221/222 compensates for loss of Skp2-mediated p27 degradation during cell cycling, contributes to proteasome-dependent G1 phase regulation of p27, and accounts for the anti-mitogenic effect of cAMP during growth inhibition.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2018

Mining the Stiffness-Sensitive Transcriptome in Human Vascular Smooth Muscle Cells Identifies Long Noncoding RNA Stiffness Regulators

Christopher Yu; Tina Xu; Richard K. Assoian; Daniel J. Rader

Objective— Vascular extracellular matrix stiffening is a risk factor for aortic and coronary artery disease. How matrix stiffening regulates the transcriptome profile of human aortic and coronary vascular smooth muscle cells (VSMCs) is not well understood. Furthermore, the role of long noncoding RNAs (lncRNAs) in the cellular response to stiffening has never been explored. This study characterizes the stiffness-sensitive (SS) transcriptome of human aortic and coronary VSMCs and identifies potential key lncRNA regulators of stiffness-dependent VSMC functions. Approach and Results— Aortic and coronary VSMCs were cultured on hydrogel substrates mimicking physiological and pathological extracellular matrix stiffness. Total RNAseq was performed to compare the SS transcriptome profiles of aortic and coronary VSMCs. We identified 3098 genes (2842 protein coding and 157 lncRNA) that were stiffness sensitive in both aortic and coronary VSMCs (false discovery rate <1%). Hierarchical clustering revealed that aortic and coronary VSMCs grouped by stiffness rather than cell origin. Conservation analyses also revealed that SS genes were more conserved than stiffness-insensitive genes. These VSMC SS genes were less tissue-type specific and expressed in more tissues than stiffness-insensitive genes. Using unbiased systems analyses, we identified MALAT1 as an SS lncRNA that regulates stiffness-dependent VSMC proliferation and migration in vitro and in vivo. Conclusions— This study provides the transcriptomic landscape of human aortic and coronary VSMCs in response to extracellular matrix stiffness and identifies novel SS human lncRNAs. Our data suggest that the SS transcriptome is evolutionarily important to VSMCs function and that SS lncRNAs can act as regulators of stiffness-dependent phenotypes.


Biophysical Journal | 2018

Gaussian Curvature Directs Stress Fiber Orientation and Cell Migration

Nathan D. Bade; Tina Xu; Randall D. Kamien; Richard K. Assoian; Kathleen J. Stebe

We show that substrates with nonzero Gaussian curvature influence the organization of stress fibers and direct the migration of cells. To study the role of Gaussian curvature, we developed a sphere-with-skirt surface in which a positive Gaussian curvature spherical cap is seamlessly surrounded by a negative Gaussian curvature draping skirt, both with principal radii similar to cell-length scales. We find significant reconfiguration of two subpopulations of stress fibers when fibroblasts are exposed to these curvatures. Apical stress fibers in cells on skirts align in the radial direction and avoid bending by forming chords across the concave gap, whereas basal stress fibers bend along the convex direction. Cell migration is also strongly influenced by the Gaussian curvature. Real-time imaging shows that cells migrating on skirts repolarize to establish a leading edge in the azimuthal direction. Thereafter, they migrate in that direction. This behavior is notably different from migration on planar surfaces, in which cells typically migrate in the same direction as the apical stress fiber orientation. Thus, this platform reveals that nonzero Gaussian curvature not only affects the positioning of cells and alignment of stress fiber subpopulations but also directs migration in a manner fundamentally distinct from that of migration on planar surfaces.


Prostaglandins & Other Lipid Mediators | 2010

Cell type- and cell cycle-specific anti-mitogenesis by cicaprost

Paola Castagnino; Devashish Kothapalli; Elizabeth A. Hawthorne; Tina Xu; Richard K. Assoian

Stents eluting anti-proliferative drugs limit restenosis, but drugs commonly used to date are relatively non-specific cytostatic agents which inhibit proliferation of intimal endothelial cells as well as medial smooth muscle cells and may thereby contribute to the clinical complications associated with angioplasty. In an effort to identify a more specific anti-proliferative agent, we compared the effects of rapamycin to those of cicaprost, a mimetic of the naturally occurring anti-mitogen, PGI(2). Rapamycin and cicaprost were both strongly anti-mitogenic in vascular smooth muscle cells (VSMCs). But unlike rapamycin, cicaprost did not inhibit mitogenesis in aortic endothelial cells even when used at concentrations >10-fold higher than its ED(50) for VSMCs. Similarly, both rapamycin and cicaprost have been reported to regulate levels of the cdk inhibitor, p27(kip1). But rapamycin remained anti-mitogenic in p27(kip1)-null VSMCs whereas the anti-mitogenic effect of cicaprost was completely dependent on p27(kip1). We conclude that stable PGI(2) mimetics may be highly specific inhibitors of p27(kip1)-dependent VSMC proliferation after vascular injury.


Scientific Reports | 2017

Stiffness-dependent motility and proliferation uncoupled by deletion of CD44

Ziba Razinia; Paola Castagnino; Tina Xu; Alexandra Vázquez-Salgado; Ellen Puré; Richard K. Assoian

Collaboration


Dive into the Tina Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Castagnino

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Shu-Lin Liu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Ho Bae

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Rader

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Eric A. Klein

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge