Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ting Shi is active.

Publication


Featured researches published by Ting Shi.


Nucleic Acids Research | 2011

ASD: a comprehensive database of allosteric proteins and modulators.

Zhimin Huang; Liang Zhu; Yan Cao; Geng Wu; Xinyi Liu; Yingyi Chen; Qi Wang; Ting Shi; Yaxue Zhao; Yuefei Wang; Weihua Li; Yixue Li; Hai-Feng Chen; Guo-Qiang Chen; Jian Zhang

Allostery is the most direct, rapid and efficient way of regulating protein function, ranging from the control of metabolic mechanisms to signal-transduction pathways. However, an enormous amount of unsystematic allostery information has deterred scientists who could benefit from this field. Here, we present the AlloSteric Database (ASD), the first online database that provides a central resource for the display, search and analysis of structure, function and related annotation for allosteric molecules. Currently, ASD contains 336 allosteric proteins from 101 species and 8095 modulators in three categories (activators, inhibitors and regulators). Proteins are annotated with a detailed description of allostery, biological process and related diseases, and modulators with binding affinity, physicochemical properties and therapeutic area. Integrating the information of allosteric proteins in ASD should allow for the identification of specific allosteric sites of a given subtype among proteins of the same family that can potentially serve as ideal targets for experimental validation. In addition, modulators curated in ASD can be used to investigate potent allosteric targets for the query compound, and also help chemists to implement structure modifications for novel allosteric drug design. Therefore, ASD could be a platform and a starting point for biologists and medicinal chemists for furthering allosteric research. ASD is freely available at http://mdl.shsmu.edu.cn/ASD/.


Journal of Molecular Graphics & Modelling | 2012

Toward understanding the molecular basis for chemical allosteric modulator design

Qi Wang; Mingyue Zheng; Zhimin Huang; Xinyi Liu; Huchen Zhou; Yingyi Chen; Ting Shi; Jian Zhang

Among the regulation mechanisms of cellular function, allosteric regulation is the most direct, rapid and efficient. Due to the wider receptor selectivity and lower target-based toxicity, compared with orthosteric ligands, allosteric modulators are expected to play a larger role in pharmaceutical research and development. However, current difficulties, such as a low affinity and unknown structural features of potential allosteric small-molecules, usually obstruct the discovery of allosteric modulators. In this study, we compared known allosteric modulators with various compounds from different databases to unveil the structural and qualitative characteristics of allosteric modulators. The results show that allosteric modulators generally contain more hydrophobic scaffolds and have a higher structural rigidity, i.e., less rotatable bonds and more rings. Based on this analysis, an empirical rule was defined to determine the structural requirements for an allosteric modulator. It was found that a large proportion of allosteric modulators (80%) can be successfully retrieved by this allosteric-like filter, which shows good discriminatory power in identifying allosteric modulators. Therefore, the study provides deeper insight into the chemical properties of allosteric modulators and has a good potential for the design or optimization of allosteric compounds.


Journal of Chemical Information and Modeling | 2012

Insights into the role of magnesium triad in myo-inositol monophosphatase: metal mechanism, substrate binding, and lithium therapy.

Shaoyong Lu; Wenkang Huang; Xiaobai Li; Zhimin Huang; Xinyi Liu; Yingyi Chen; Ting Shi; Jian Zhang

myo-Inositol monophosphatase (IMPase) plays a pivotal role in the intracellular phosphatidylinositol cell signaling pathway. It has attracted considerable attention as a putative therapeutic target for lithium therapy in the treatment of bipolar disorder. A trio of activated cofactor Mg²⁺ ions is required for inositol monophosphate hydrolysis by IMPase. In the present study, computational studies, including two-layered ONIOM-based quantum mechanics/mechanical mechanics (QM/MM) calculations, molecular modeling, and molecular dynamics (MD) simulations, were performed to ascertain the role of the Mg²⁺ triad in the IMPase active site. The QM/MM calculations show that the structural identity of the nucleophilic water molecule W1 shared by Mg²⁺-1 and Mg²⁺-3, activated by Thr95/Asp47 dyad, is a hydroxide ion. Moreover, Mg²⁺-3 needs to be conjugated with Mg²⁺-1 in the binding site to create the activated nucleophilic hydroxide ion in accordance with the three-metal ion catalytic mechanism. The MD simulation of the IMPase-substrate-Mg²⁺ complex shows that the three Mg²⁺ ions promote substrate binding and help fix the phosphate moiety of the substrate for nucleophilic attack by the hydroxide ion. When Mg²⁺-2 is displaced with Li⁺, the MD simulations of the postreaction complex indicate that the conformation of the catalytic loop (residues 33 to 44) is disrupted and water molecule W2 does not coordinate with Li⁺. This disruption traps the inorganic phosphate and inositolate in the active site, which lead to IMPase inhibition. By contrast, in the native Mg²⁺ system, the W2 ligated by Mg²⁺-2 and Asp200 aids in protonation of the leaving inositolate moiety.


Proteins | 2013

How calcium inhibits the magnesium‐dependent kinase gsk3β: A molecular simulation study

Shaoyong Lu; Zhimin Huang; Wenkang Huang; Xinyi Liu; Yingyi Chen; Ting Shi; Jian Zhang

Glycogen synthase kinase 3β (GSK3β) is a ubiquitous serine/threonine kinase that plays a pivotal role in many biological processes. GSK3β catalyzes the transfer of γ‐phosphate of ATP to the unique substrate Ser/Thr residues with the assistance of two natural activating cofactors Mg2+. Interestingly, the biological observation reveals that a non‐native Ca2+ ion can inhibit the GSK3β catalytic activity. Here, the inhibitory mechanism of GSK3β by the displacement of native Mg2+ at site 1 by Ca2+ was investigated by means of 80 ns comparative molecular dynamics (MD) simulations of the GSK3β···Mg2+‐2/ATP/ Mg2+‐1 and GSK3β···Mg2+‐2/ATP/Ca2+‐1 systems. MD simulation results revealed that using the AMBER point charge model force field for Mg2+ was more appropriate in the reproduction of the active site architectural characteristics of GSK3β than using the magnesium‐cationic dummy atom model force field. Compared with the native Mg2+ bound system, the misalignment of the critical triphosphate moiety of ATP, the erroneous coordination environments around the Mg2+ ion at site 2, and the rupture of the key hydrogen bond between the invariant Lys85 and the ATP Oβ2 atom in the Ca2+ substituted system were observed in the MD simulation due to the Ca2+ ion in active site in order to achieve its preferred sevenfold coordination geometry, which adequately abolish the enzymatic activity. The obtained results are valuable in understanding the possible mechanism by why Ca2+ inhibits the GSK3β activity and also provide insights into the mechanism of Ca2+ inhibition in other structurally related protein kinases. Proteins 2013.


Journal of Molecular Graphics & Modelling | 2013

Toward an understanding of the sequence and structural basis of allosteric proteins

Xiaobai Li; Yingyi Chen; Shaoyong Lu; Zhimin Huang; Xinyi Liu; Qi Wang; Ting Shi; Jian Zhang

Allostery is the most efficient means of regulating protein functions, ranging from the control of metabolic mechanisms to signal transduction pathways. Although allosteric regulation has been recognized for half a century, our knowledge is limited to the characteristics of allosteric proteins and the structural coupling of allosteric sites and modulators. In this paper, we present a comprehensive analysis of allosteric proteins that provides insight into the foundation of allosteric interactions by revealing a series of common features in the allosteric proteins. Allosteric proteins mainly appear in transferases, and phosphorylation is the most common type of modification found in allosteric proteins. Disorders related to allosteric proteins primarily comprise metabolic diseases and cancers. In general, allosteric proteins prefer to exist as monomers or even-numbered multimers. Greater stability and hydrophobicity are observed in allosteric proteins than in general proteins. Further analysis of the allosteric sites reveals a series of buried and compact pockets composed of significantly greater hydrophobic surface area than the corresponding orthosteric sites. The hydrophobicity of the allosteric sites plays a dominant role in the binding of allosteric modulators as observed in the analysis of 106 diverse allosteric protein-modulator pairs. These results may be of great significance in predicting which proteins are allosteric and in designing novel triggers to inhibit or activate proteins of interest.


PLOS ONE | 2012

HEMD: An Integrated Tool of Human Epigenetic Enzymes and Chemical Modulators for Therapeutics

Zhimin Huang; Haiming Jiang; Xinyi Liu; Yingyi Chen; Jiemin Wong; Qi Wang; Wenkang Huang; Ting Shi; Jian Zhang

Background Epigenetic mechanisms mainly include DNA methylation, post-translational modifications of histones, chromatin remodeling and non-coding RNAs. All of these processes are mediated and controlled by enzymes. Abnormalities of the enzymes are involved in a variety of complex human diseases. Recently, potent natural or synthetic chemicals are utilized to establish the quantitative contributions of epigenetic regulation through the enzymes and provide novel insight for developing new therapeutics. However, the development of more specific and effective epigenetic therapeutics requires a more complete understanding of the chemical epigenomic landscape. Description Here, we present a human epigenetic enzyme and modulator database (HEMD), the database which provides a central resource for the display, search, and analysis of the structure, function, and related annotation for human epigenetic enzymes and chemical modulators focused on epigenetic therapeutics. Currently, HEMD contains 269 epigenetic enzymes and 4377 modulators in three categories (activators, inhibitors, and regulators). Enzymes are annotated with detailed description of epigenetic mechanisms, catalytic processes, and related diseases, and chemical modulators with binding sites, pharmacological effect, and therapeutic uses. Integrating the information of epigenetic enzymes in HEMD should allow for the prediction of conserved features for proteins and could potentially classify them as ideal targets for experimental validation. In addition, modulators curated in HEMD can be used to investigate potent epigenetic targets for the query compound and also help chemists to implement structural modifications for the design of novel epigenetic drugs. Conclusions HEMD could be a platform and a starting point for biologists and medicinal chemists for furthering research on epigenetic therapeutics. HEMD is freely available at http://mdl.shsmu.edu.cn/HEMD/.


Journal of Physical Chemistry B | 2010

Investigation of the Catalytic Mechanism of Sir2 Enzyme with QM/MM Approach: SN1 vs SN2?

Zhongjie Liang; Ting Shi; Sisheng Ouyang; Honglin Li; Kunqian Yu; Weiliang Zhu; Cheng Luo; Hualiang Jiang

Sir2, the histone deacetylase III family, has been subjected to a wide range of studies because of their crucial roles in DNA repair, longevity, transcriptional silencing, genome stability, apoptosis, and fat mobilization. The enzyme binds NAD(+) and acetyllysine as substrates and generates lysine, 2-O-acetyl-ADP-ribose, and nicotinamide as products. However, the mechanism of the first step in Sir2 deacetylation reaction from various studies is controversial. To characterize this catalytic mechanism of acetyllysine deacetylation by Sir2, we employed a combined computational approach to carry out molecular modeling, molecular dynamics (MD) simulations, quantum mechanics/molecular mechanics (QM/MM) calculations on catalysis by both yeast Hst2 (homologue of SIR two 2) and bacterial Sir2TM (Sir2 homologue from Thermatoga maritima). Our three-dimensional (3D) model of the complex is composed of Sir2 protein, NAD(+), and acetyllysine (ALY) substrate. A 15-ns MD simulation of the complex revealed that Gln115 and His135 play a determining role in deacetylation. These two residues can act as bases to facilitate the deprotonation of 2-OH from N-ribose. The result is in great agreement with previous mutagenesis analysis data. QM/MM calculations were further performed to study the mechanism of the first step in deacetylation in the two systems. The predicted potential energy barriers for yHst2 and Sir2TM are 12.0 and 15.7 kcal/mol, respectively. The characteristics of the potential energy surface indicated this reaction belongs to a SN2-like mechanism. These results provide insights into the Sir2 mechanism of nicotinamide inhibition and have important implications for the discovery of effectors against Sir2 enzymes.


PLOS ONE | 2009

Lys169 of Human Glucokinase Is a Determinant for Glucose Phosphorylation: Implication for the Atomic Mechanism of Glucokinase Catalysis

Jian Zhang; Chenjing Li; Ting Shi; Kaixian Chen; Xu Shen; Hualiang Jiang

Glucokinase (GK), a glucose sensor, maintains plasma glucose homeostasis via phosphorylation of glucose and is a potential therapeutic target for treating maturity-onset diabetes of the young (MODY) and persistent hyperinsulinemic hypoglycemia of infancy (PHHI). To characterize the catalytic mechanism of glucose phosphorylation by GK, we combined molecular modeling, molecular dynamics (MD) simulations, quantum mechanics/molecular mechanics (QM/MM) calculations, experimental mutagenesis and enzymatic kinetic analysis on both wild-type and mutated GK. Our three-dimensional (3D) model of the GK-Mg2+-ATP-glucose (GMAG) complex, is in agreement with a large number of mutagenesis data, and elucidates atomic information of the catalytic site in GK for glucose phosphorylation. A 10-ns MD simulation of the GMAG complex revealed that Lys169 plays a dominant role in glucose phosphorylation. This prediction was verified by experimental mutagenesis of GK (K169A) and enzymatic kinetic analyses of glucose phosphorylation. QM/MM calculations were further used to study the role of Lys169 in the catalytic mechanism of the glucose phosphorylation and we found that Lys169 enhances the binding of GK with both ATP and glucose by serving as a bridge between ATP and glucose. More importantly, Lys169 directly participates in the glucose phosphorylation as a general acid catalyst. Our findings provide mechanistic details of glucose phorphorylation catalyzed by GK, and are important for understanding the pathogenic mechanism of MODY.


Journal of Physical Chemistry B | 2010

How Does Influenza Virus A Escape from Amantadine

Guangrong Qin; Kunqian Yu; Ting Shi; Cheng Luo; Guohui Li; Weiliang Zhu; Hualiang Jiang

Antiflu drugs such as amantadine (AMT) were reported to be insensitive to influenza A virus gradually after their marketing. Mutation experiments indicate that the trans-membrane domain of M2 protein plays an essential role in AMT resistance, especially the S31N mutation. To investigate the details of structure and mechanism, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations have been carried out on both the wild-type protein and its S31N mutant. Our MD simulations reveal AMT can occupy different binding positions in the pore of M2 channel, and the binding modes have also been verified and analyzed by QM/MM calculations. More importantly, we find the formation of a water wire modulated by the binding position of AMT to be essential for the function of M2 protein, and, the block of water wire can inhibit channel function in the WT system. Failure of channel blocking would cause AMT drug resistance in the S31N mutant. These results support one of the conflicting views about M2-drug binding sites: AMT binds to the pore of M2 channel. Our findings help clarify the resistant mechanism of AMT to M2 protein and should facilitate the discovery of new drugs for treating influenza A virus.


PLOS ONE | 2012

SPPS: A Sequence-Based Method for Predicting Probability of Protein-Protein Interaction Partners

Xinyi Liu; Bin Liu; Zhimin Huang; Ting Shi; Yingyi Chen; Jian Zhang

Background The molecular network sustained by different types of interactions among proteins is widely manifested as the fundamental driving force of cellular operations. Many biological functions are determined by the crosstalk between proteins rather than by the characteristics of their individual components. Thus, the searches for protein partners in global networks are imperative when attempting to address the principles of biology. Results We have developed a web-based tool “Sequence-based Protein Partners Search” (SPPS) to explore interacting partners of proteins, by searching over a large repertoire of proteins across many species. SPPS provides a database containing more than 60,000 protein sequences with annotations and a protein-partner search engine in two modes (Single Query and Multiple Query). Two interacting proteins of human FBXO6 protein have been found using the service in the study. In addition, users can refine potential protein partner hits by using annotations and possible interactive network in the SPPS web server. Conclusions SPPS provides a new type of tool to facilitate the identification of direct or indirect protein partners which may guide scientists on the investigation of new signaling pathways. The SPPS server is available to the public at http://mdl.shsmu.edu.cn/SPPS/.

Collaboration


Dive into the Ting Shi's collaboration.

Top Co-Authors

Avatar

Jian Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yingyi Chen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xinyi Liu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Zhimin Huang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Hualiang Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qi Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Shaoyong Lu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Wenkang Huang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xiaobai Li

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Cheng Luo

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge