Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhimin Huang is active.

Publication


Featured researches published by Zhimin Huang.


Nucleic Acids Research | 2011

ASD: a comprehensive database of allosteric proteins and modulators.

Zhimin Huang; Liang Zhu; Yan Cao; Geng Wu; Xinyi Liu; Yingyi Chen; Qi Wang; Ting Shi; Yaxue Zhao; Yuefei Wang; Weihua Li; Yixue Li; Hai-Feng Chen; Guo-Qiang Chen; Jian Zhang

Allostery is the most direct, rapid and efficient way of regulating protein function, ranging from the control of metabolic mechanisms to signal-transduction pathways. However, an enormous amount of unsystematic allostery information has deterred scientists who could benefit from this field. Here, we present the AlloSteric Database (ASD), the first online database that provides a central resource for the display, search and analysis of structure, function and related annotation for allosteric molecules. Currently, ASD contains 336 allosteric proteins from 101 species and 8095 modulators in three categories (activators, inhibitors and regulators). Proteins are annotated with a detailed description of allostery, biological process and related diseases, and modulators with binding affinity, physicochemical properties and therapeutic area. Integrating the information of allosteric proteins in ASD should allow for the identification of specific allosteric sites of a given subtype among proteins of the same family that can potentially serve as ideal targets for experimental validation. In addition, modulators curated in ASD can be used to investigate potent allosteric targets for the query compound, and also help chemists to implement structure modifications for novel allosteric drug design. Therefore, ASD could be a platform and a starting point for biologists and medicinal chemists for furthering allosteric research. ASD is freely available at http://mdl.shsmu.edu.cn/ASD/.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Crucial role of copper in detection of metal-coordinating odorants

Xu-Fang Duan; Eric Block; Zhen Li; Timothy Connelly; Jian Zhang; Zhimin Huang; Xubo Su; Yi Pan; Lifang Wu; Qiuyi Chi; Siji Thomas; Shao-Zhong Zhang; Minghong Ma; Hiroaki Matsunami; Guo-Qiang Chen; Hanyi Zhuang

Odorant receptors (ORs) in olfactory sensory neurons (OSNs) mediate detection of volatile odorants. Divalent sulfur compounds, such as thiols and thioethers, are extremely potent odorants. We identify a mouse OR, MOR244-3, robustly responding to (methylthio)methanethiol (MeSCH2SH; MTMT) in heterologous cells. Found specifically in male mouse urine, strong-smelling MTMT [human threshold 100 parts per billion (ppb)] is a semiochemical that attracts female mice. Nonadjacent thiol and thioether groups in MTMT suggest involvement of a chelated metal complex in MOR244-3 activation. Metal ion involvement in thiol–OR interactions was previously proposed, but whether these ions change thiol-mediated OR activation remained unknown. We show that copper ion among all metal ions tested is required for robust activation of MOR244-3 toward ppb levels of MTMT, structurally related sulfur compounds, and other metal-coordinating odorants (e.g., strong-smelling trans-cyclooctene) among >125 compounds tested. Copper chelator (tetraethylenepentamine, TEPA) addition abolishes the response of MOR244-3 to MTMT. Histidine 105, located in the third transmembrane domain near the extracellular side, is proposed to serve as a copper-coordinating residue mediating interaction with the MTMT–copper complex. Electrophysiological recordings of the OSNs in the septal organ, abundantly expressing MOR244-3, revealed neurons responding to MTMT. Addition of copper ion and chelator TEPA respectively enhanced and reduced the response of some MTMT-responding neurons, demonstrating the physiological relevance of copper ion in olfaction. In a behavioral context, an olfactory discrimination assay showed that mice injected with TEPA failed to discriminate MTMT. This report establishes the role of metal ions in mammalian odor detection by ORs.


Nucleic Acids Research | 2014

ASD v2.0: updated content and novel features focusing on allosteric regulation

Zhimin Huang; Linkai Mou; Qiancheng Shen; Shaoyong Lu; Chuangang Li; Xinyi Liu; Guanqiao Wang; Shuai Li; Lv Geng; Yaqin Liu; Jiawei Wu; Guo-Qiang Chen; Jian Zhang

Allostery is the most direct and efficient way for regulation of biological macromolecule function and is induced by the binding of a ligand at an allosteric site topographically distinct from the orthosteric site. AlloSteric Database (ASD, http://mdl.shsmu.edu.cn/ASD) has been developed to provide comprehensive information on allostery. Owing to the inherent high receptor selectivity and lower target-based toxicity, allosteric regulation is expected to assume a more prominent role in drug discovery and bioengineering, leading to the rapid growth of allosteric findings. In this updated version, ASD v2.0 has expanded to 1286 allosteric proteins, 565 allosteric diseases and 22 008 allosteric modulators. A total of 907 allosteric site-modulator structural complexes and >200 structural pairs of orthosteric/allosteric sites in the allosteric proteins were constructed for researchers to develop allosteric site and pathway tools in response to community demands. Up-to-date allosteric pathways were manually curated in the updated version. In addition, both the front-end and the back-end of ASD have been redesigned and enhanced to allow more efficient access. Taken together, these updates are useful for facilitating the investigation of allosteric mechanisms, allosteric target identification and allosteric drug discovery.


Bioinformatics | 2013

Allosite: a method for predicting allosteric sites

Wenkang Huang; Shaoyong Lu; Zhimin Huang; Xinyi Liu; Linkai Mou; Yu Luo; Yanlong Zhao; Yaqin Liu; Zhongjie Chen; Tingjun Hou; Jian Zhang

MOTIVATION The use of allosteric modulators as preferred therapeutic agents against classic orthosteric ligands has colossal advantages, including higher specificity, fewer side effects and lower toxicity. Therefore, the computational prediction of allosteric sites in proteins is receiving increased attention in the field of drug discovery. Allosite is a newly developed automatic tool for the prediction of allosteric sites in proteins of interest and is now available through a web server. AVAILABILITY The Allosite server and tutorials are freely available at http://mdl.shsmu.edu.cn/AST CONTACT: [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Nucleic Acids Research | 2016

ASD v3.0: unraveling allosteric regulation with structural mechanisms and biological networks

Qiancheng Shen; Guanqiao Wang; Shuai Li; Xinyi Liu; Shaoyong Lu; Zhongjie Chen; Kun Song; Junhao Yan; Lv Geng; Zhimin Huang; Wenkang Huang; Guo-Qiang Chen; Jian Zhang

Allosteric regulation, the most direct and efficient way of regulating protein function, is induced by the binding of a ligand at one site that is topographically distinct from an orthosteric site. Allosteric Database (ASD, available online at http://mdl.shsmu.edu.cn/ASD) has been developed to provide comprehensive information featuring allosteric regulation. With increasing data, fundamental questions pertaining to allostery are currently receiving more attention from the mechanism of allosteric changes in an individual protein to the entire effect of the changes in the interconnected network in the cell. Thus, the following novel features were added to this updated version: (i) structural mechanisms of more than 1600 allosteric actions were elucidated by a comparison of site structures before and after the binding of an modulator; (ii) 261 allosteric networks were identified to unveil how the allosteric action in a single protein would propagate to affect downstream proteins; (iii) two of the largest human allosteromes, protein kinases and GPCRs, were thoroughly constructed; and (iv) web interface and data organization were completely redesigned for efficient access. In addition, allosteric data have largely expanded in this update. These updates are useful for facilitating the investigation of allosteric mechanisms, dynamic networks and drug discoveries.


Journal of Chemical Information and Modeling | 2012

Insights into the role of magnesium triad in myo-inositol monophosphatase: metal mechanism, substrate binding, and lithium therapy.

Shaoyong Lu; Wenkang Huang; Xiaobai Li; Zhimin Huang; Xinyi Liu; Yingyi Chen; Ting Shi; Jian Zhang

myo-Inositol monophosphatase (IMPase) plays a pivotal role in the intracellular phosphatidylinositol cell signaling pathway. It has attracted considerable attention as a putative therapeutic target for lithium therapy in the treatment of bipolar disorder. A trio of activated cofactor Mg²⁺ ions is required for inositol monophosphate hydrolysis by IMPase. In the present study, computational studies, including two-layered ONIOM-based quantum mechanics/mechanical mechanics (QM/MM) calculations, molecular modeling, and molecular dynamics (MD) simulations, were performed to ascertain the role of the Mg²⁺ triad in the IMPase active site. The QM/MM calculations show that the structural identity of the nucleophilic water molecule W1 shared by Mg²⁺-1 and Mg²⁺-3, activated by Thr95/Asp47 dyad, is a hydroxide ion. Moreover, Mg²⁺-3 needs to be conjugated with Mg²⁺-1 in the binding site to create the activated nucleophilic hydroxide ion in accordance with the three-metal ion catalytic mechanism. The MD simulation of the IMPase-substrate-Mg²⁺ complex shows that the three Mg²⁺ ions promote substrate binding and help fix the phosphate moiety of the substrate for nucleophilic attack by the hydroxide ion. When Mg²⁺-2 is displaced with Li⁺, the MD simulations of the postreaction complex indicate that the conformation of the catalytic loop (residues 33 to 44) is disrupted and water molecule W2 does not coordinate with Li⁺. This disruption traps the inorganic phosphate and inositolate in the active site, which lead to IMPase inhibition. By contrast, in the native Mg²⁺ system, the W2 ligated by Mg²⁺-2 and Asp200 aids in protonation of the leaving inositolate moiety.


Proteins | 2013

How calcium inhibits the magnesium‐dependent kinase gsk3β: A molecular simulation study

Shaoyong Lu; Zhimin Huang; Wenkang Huang; Xinyi Liu; Yingyi Chen; Ting Shi; Jian Zhang

Glycogen synthase kinase 3β (GSK3β) is a ubiquitous serine/threonine kinase that plays a pivotal role in many biological processes. GSK3β catalyzes the transfer of γ‐phosphate of ATP to the unique substrate Ser/Thr residues with the assistance of two natural activating cofactors Mg2+. Interestingly, the biological observation reveals that a non‐native Ca2+ ion can inhibit the GSK3β catalytic activity. Here, the inhibitory mechanism of GSK3β by the displacement of native Mg2+ at site 1 by Ca2+ was investigated by means of 80 ns comparative molecular dynamics (MD) simulations of the GSK3β···Mg2+‐2/ATP/ Mg2+‐1 and GSK3β···Mg2+‐2/ATP/Ca2+‐1 systems. MD simulation results revealed that using the AMBER point charge model force field for Mg2+ was more appropriate in the reproduction of the active site architectural characteristics of GSK3β than using the magnesium‐cationic dummy atom model force field. Compared with the native Mg2+ bound system, the misalignment of the critical triphosphate moiety of ATP, the erroneous coordination environments around the Mg2+ ion at site 2, and the rupture of the key hydrogen bond between the invariant Lys85 and the ATP Oβ2 atom in the Ca2+ substituted system were observed in the MD simulation due to the Ca2+ ion in active site in order to achieve its preferred sevenfold coordination geometry, which adequately abolish the enzymatic activity. The obtained results are valuable in understanding the possible mechanism by why Ca2+ inhibits the GSK3β activity and also provide insights into the mechanism of Ca2+ inhibition in other structurally related protein kinases. Proteins 2013.


Journal of Molecular Graphics & Modelling | 2013

Toward an understanding of the sequence and structural basis of allosteric proteins

Xiaobai Li; Yingyi Chen; Shaoyong Lu; Zhimin Huang; Xinyi Liu; Qi Wang; Ting Shi; Jian Zhang

Allostery is the most efficient means of regulating protein functions, ranging from the control of metabolic mechanisms to signal transduction pathways. Although allosteric regulation has been recognized for half a century, our knowledge is limited to the characteristics of allosteric proteins and the structural coupling of allosteric sites and modulators. In this paper, we present a comprehensive analysis of allosteric proteins that provides insight into the foundation of allosteric interactions by revealing a series of common features in the allosteric proteins. Allosteric proteins mainly appear in transferases, and phosphorylation is the most common type of modification found in allosteric proteins. Disorders related to allosteric proteins primarily comprise metabolic diseases and cancers. In general, allosteric proteins prefer to exist as monomers or even-numbered multimers. Greater stability and hydrophobicity are observed in allosteric proteins than in general proteins. Further analysis of the allosteric sites reveals a series of buried and compact pockets composed of significantly greater hydrophobic surface area than the corresponding orthosteric sites. The hydrophobicity of the allosteric sites plays a dominant role in the binding of allosteric modulators as observed in the analysis of 106 diverse allosteric protein-modulator pairs. These results may be of great significance in predicting which proteins are allosteric and in designing novel triggers to inhibit or activate proteins of interest.


PLOS ONE | 2012

A Novel Inhibitor of Human La Protein with Anti-HBV Activity Discovered by Structure-Based Virtual Screening and In Vitro Evaluation

Jing Tang; Zhimin Huang; Yingyi Chen; Zhao-Hui Zhang; Gao-Lin Liu; Jian Zhang

Background Over 350 million people worldwide are infected with hepatitis B virus (HBV), a major cause of liver failure and hepatocellular carcinoma. Current therapeutic agents are highly effective, but are also associated with development of viral resistance. Therefore, strategies for identifying other anti-HBV agents with specific, but distinctive mechanisms of action are needed. The human La (hLa) protein, which forms a stabilizing complex with HBV RNA ribonucleoprotein to promote HBV replication, is a promising target of molecular therapy. Aims This study aimed to discover novel inhibitors of hLa that could inhibit HBV replication and expression. Methods A multistage molecular docking approach was used to screen a Specs database and an in-house library against hLa binding sites. Sequential in vitro evaluations were performed to detect potential compounds with high scores in HepG2.2.15 cells. Results Of the 26 potential compounds with high scores chosen for experimental verification, 12 had HBV DNA inhibition ratios of less than 50% with P<0.05. Six had significant inhibition of HBV e antigen (HBeAg) levels, and 13 had significant inhibition of HBV surface antigen (HBsAg) levels by in vitro assays. Compounds HBSC-11, HBSC-15 and HBSC-34 (HBSC is system prefix for active compounds screened by the library) were selected for evaluation. HBSC-11 was found to have an obvious inhibitory effect on hLa transcription and expression. Conclusions Our findings suggest that anti-HBV activity of HBSC-11 may be mediated by a reduction in hLa levels. In addition, our data suggest the potential clinical use of hLa inhibitors, such as HBSC-11, for treating HBV infection.


PLOS ONE | 2012

HEMD: An Integrated Tool of Human Epigenetic Enzymes and Chemical Modulators for Therapeutics

Zhimin Huang; Haiming Jiang; Xinyi Liu; Yingyi Chen; Jiemin Wong; Qi Wang; Wenkang Huang; Ting Shi; Jian Zhang

Background Epigenetic mechanisms mainly include DNA methylation, post-translational modifications of histones, chromatin remodeling and non-coding RNAs. All of these processes are mediated and controlled by enzymes. Abnormalities of the enzymes are involved in a variety of complex human diseases. Recently, potent natural or synthetic chemicals are utilized to establish the quantitative contributions of epigenetic regulation through the enzymes and provide novel insight for developing new therapeutics. However, the development of more specific and effective epigenetic therapeutics requires a more complete understanding of the chemical epigenomic landscape. Description Here, we present a human epigenetic enzyme and modulator database (HEMD), the database which provides a central resource for the display, search, and analysis of the structure, function, and related annotation for human epigenetic enzymes and chemical modulators focused on epigenetic therapeutics. Currently, HEMD contains 269 epigenetic enzymes and 4377 modulators in three categories (activators, inhibitors, and regulators). Enzymes are annotated with detailed description of epigenetic mechanisms, catalytic processes, and related diseases, and chemical modulators with binding sites, pharmacological effect, and therapeutic uses. Integrating the information of epigenetic enzymes in HEMD should allow for the prediction of conserved features for proteins and could potentially classify them as ideal targets for experimental validation. In addition, modulators curated in HEMD can be used to investigate potent epigenetic targets for the query compound and also help chemists to implement structural modifications for the design of novel epigenetic drugs. Conclusions HEMD could be a platform and a starting point for biologists and medicinal chemists for furthering research on epigenetic therapeutics. HEMD is freely available at http://mdl.shsmu.edu.cn/HEMD/.

Collaboration


Dive into the Zhimin Huang's collaboration.

Top Co-Authors

Avatar

Jian Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xinyi Liu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yingyi Chen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Ting Shi

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Shaoyong Lu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Wenkang Huang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Guo-Qiang Chen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Qi Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Min Huang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Guanqiao Wang

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge