Ting Xue
Xidian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ting Xue.
PLOS ONE | 2012
Ting Xue; Kai Yuan; Ling Zhao; Dahua Yu; Limei Zhao; Tao Dong; Ping Cheng; Karen M. von Deneen; Wei Qin; Jie Tian
Background Previous studies have defined low-frequency, spatially consistent intrinsic connectivity networks (ICN) in resting functional magnetic resonance imaging (fMRI) data which reflect functional interactions among distinct brain areas. We sought to explore whether and how repeated migraine attacks influence intrinsic brain connectivity, as well as how activity in these networks correlates with clinical indicators of migraine. Methods/Principal Findings Resting-state fMRI data in twenty-three patients with migraines without aura (MwoA) and 23 age- and gender-matched healthy controls (HC) were analyzed using independent component analysis (ICA), in combination with a “dual-regression” technique to identify the group differences of three important pain-related networks [default mode network (DMN), bilateral central executive network (CEN), salience network (SN)] between the MwoA patients and HC. Compared with the HC, MwoA patients showed aberrant intrinsic connectivity within the bilateral CEN and SN, and greater connectivity between both the DMN and right CEN (rCEN) and the insula cortex - a critical region involving in pain processing. Furthermore, greater connectivity between both the DMN and rCEN and the insula correlated with duration of migraine. Conclusions Our findings may provide new insights into the characterization of migraine as a condition affecting brain activity in intrinsic connectivity networks. Moreover, the abnormalities may be the consequence of a persistent central neural system dysfunction, reflecting cumulative brain insults due to frequent ongoing migraine attacks.
Molecular Pain | 2010
Lijun Bai; Jie Tian; Chongguang Zhong; Ting Xue; Youbo You; Zhenyu Liu; Peng-Peng Chen; Qiyong Gong; Lin Ai; Wei Qin; Jianping Dai; Yijun Liu
BackgroundAccumulating neuroimaging studies in humans have shown that acupuncture can modulate a widely distributed brain network, large portions of which are overlapped with the pain-related areas. Recently, a striking feature of acupuncture-induced analgesia is found to be associated with its long-last effect, which has a delayed onset and gradually reaches a peak even after acupuncture needling being terminated. Identifying temporal neural responses in these areas that occur at particular time -- both acute and sustained effects during acupuncture processes -- may therefore shed lights on how such peripheral inputs are conducted and mediated through the CNS. In the present study, we adopted a non-repeated event-related (NRER) fMRI paradigm and control theory based approach namely change-point analysis in order to capture the detailed temporal profile of neural responses induced by acupuncture.ResultsOur findings demonstrated that neural activities at the different stages of acupuncture presented distinct temporal patterns, in which consistently positive neural responses were found during the period of acupuncture needling while much more complex and dynamic activities found during a post-acupuncture period. These brain responses had a significant time-dependent effect which showed different onset time and duration of neural activities. The amygdala and perigenual anterior cingulate cortex (pACC), exhibited increased activities during the needling phase while decreased gradually to reach a peak below the baseline. The periaqueductal gray (PAG) and hypothalamus presented saliently intermittent activations across the whole fMRI session. Apart from the time-dependent responses, relatively persistent activities were also identified in the anterior insula and prefrontal cortices. The overall findings indicate that acupuncture may engage differential temporal neural responses as a function of time in a wide range of brain networks.ConclusionsOur study has provided evidence supporting a view that acupuncture intervention involves complex modulations of temporal neural response, and its effect can gradually resolve as a function of time. The functional specificity of acupuncture at ST36 may involve multiple levels of differential activities of a wide range of brain networks, which are gradually enhanced even after acupuncture needle being terminated.
NMR in Biomedicine | 2013
Ting Xue; Kai Yuan; Ping Cheng; Ling Zhao; Limei Zhao; Dahua Yu; Tao Dong; Karen M. von Deneen; Qiyong Gong; Wei Qin; Jie Tian
Although previous resting‐state studies have reported abnormal functional cerebral changes in patients with migraine without aura (MwoA), few have focused on alterations in both regional spontaneous neuronal activity and corresponding brain circuits in MwoA patients during rest. Eighteen MwoA patients and 18 age‐ and gender‐matched healthy controls (HC) were recruited in the current study. Baseline cerebral alterations were investigated using amplitude of low‐frequency fluctuation (ALFF) and region of interest (ROI)‐based functional connectivity (FC) analyses. Compared with HC, MwoA patients showed decreased ALFF values in the left rostral anterior cingulate cortex (rACC) and bilateral prefrontal cortex (PFC) as well as increased ALFF values in the right thalamus. FC analysis also revealed abnormal FCs associated with these ROIs. In addition, ALFF values of the left rACC correlated with duration of disease in MwoA. Our findings could lead to a better understanding of intrinsic functional architecture of baseline brain activity in MwoA, providing both regional and brain circuit spontaneous neuronal activity properties. Copyright
Psychiatry Research-neuroimaging | 2012
Zhenyu Liu; Yumei Zhang; Hao Yan; Lijun Bai; Ruwei Dai; Wenjuan Wei; Chongguang Zhong; Ting Xue; Hu Wang; Yuanyuan Feng; Youbo You; Xinghu Zhang; Jie Tian
Recent studies have shown that cognitive and memory decline in patients with Alzheimers disease (AD) is coupled with losses of small-world attributes. However, few studies have investigated the characteristics of the whole brain networks in individuals with mild cognitive impairment (MCI). In this functional magnetic resonance imaging (fMRI) study, we investigated the topological properties of the whole brain networks in 18 AD patients, 16 MCI patients, and 18 age-matched healthy subjects. Among the three groups, AD patients showed the longest characteristic path lengths and the largest clustering coefficients, while the small-world measures of MCI networks exhibited intermediate values. The finding was not surprising, given that MCI is considered to be the prodromal stage of AD. Compared with normal controls, MCI patients showed decreased nodal centrality mainly in the medial temporal lobe as well as increased nodal centrality in the occipital regions. In addition, we detected increased nodal centrality in the medial temporal lobe and frontal gyrus, and decreased nodal centrality mainly in the amygdala in MCI patients compared with AD patients. The results suggested a widespread rewiring in AD and MCI patients. These findings concerning AD and MCI may be an integrated reflection of reorganization of the brain networks accompanied with the cognitive decline that may lead to AD.
NMR in Biomedicine | 2012
Zhenyu Liu; Yumei Zhang; Lijun Bai; Hao Yan; Ruwei Dai; Chongguang Zhong; Hu Wang; Wenjuan Wei; Ting Xue; Yuanyuan Feng; Youbo You; Jie Tian
Recent neuroimaging studies have shown that the cognitive and memory decline in patients with Alzheimers disease (AD) is coupled with abnormal functions of focal brain regions and disrupted functional connectivity between distinct brain regions, as well as losses in small‐world attributes. However, the causal interactions among the spatially isolated, but functionally related, resting state networks (RSNs) are still largely unexplored. In this study, we first identified eight RSNs by independent components analysis from resting state functional MRI data of 18 patients with AD and 18 age‐matched healthy subjects. We then performed a multivariate Granger causality analysis (mGCA) to evaluate the effective connectivity among the RSNs. We found that patients with AD exhibited decreased causal interactions among the RSNs in both intensity and quantity relative to normal controls. Results from mGCA indicated that the causal interactions involving the default mode network and auditory network were weaker in patients with AD, whereas stronger causal connectivity emerged in relation to the memory network and executive control network. Our findings suggest that the default mode network plays a less important role in patients with AD. Increased causal connectivity of the memory network and self‐referential network may elucidate the dysfunctional and compensatory processes in the brain networks of patients with AD. These preliminary findings may provide a new pathway towards the determination of the neurophysiological mechanisms of AD. Copyright
Journal of Magnetic Resonance Imaging | 2012
Chongguang Zhong; Lijun Bai; Ruwei Dai; Ting Xue; Hu Wang; Yuanyuan Feng; Zhenyu Liu; Youbo You; Shangjie Chen; Jie Tian
To investigate acupuncture specificity by exploring causal relationships of brain networks following acupuncture at GB40 (Qiuxu), with the acupoint KI3 (Taixi) as a control (belonging to the same nerve segment but different meridians).
NMR in Biomedicine | 2013
Dahua Yu; Kai Yuan; Ling Zhao; Minghao Dong; Peng Liu; Xuejuan Yang; Jixin Liu; Jinbo Sun; Guangyu Zhou; Ting Xue; Limei Zhao; Ping Cheng; Tao Dong; Karen M. von Deneen; Wei Qin; Jie Tian
Previous studies have proven that migraine and depression are bidirectionally linked. However, few studies have investigated white matter (WM) integrity affected by depressive symptoms in patients suffering from migraine without aura (MWoA). Forty patients with MWoA were divided into two groups according to their self‐rating depression scale (SDS) score in the present study, including 20 in the SDS (+) (SDS > 49) group and 20 in the SDS (−) (SDS ≤ 49) group. Forty healthy participants were also recruited as the control group. Tract‐based spatial statistics analyses with multiple diffusion tensor imaging‐derived indices [fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD)] were employed collectively to investigate WM integrity between all patients with MWoA and all healthy controls, between each subgroup (SDS (−) group and SDS (+) group) and healthy controls, and between the SDS (−) and SDS (+) groups. Compared with healthy controls, decreased AD was shown in several WM tracts of the whole MWoA group, SDS (−) group and SDS (+) group. In addition, compared with the SDS (−) group, the SDS (+) group showed decreased FA and increased MD and RD, with conserved AD, including the genu, body and splenium of the corpus callosum, bilateral superior longitudinal fasciculi, the right anterior corona radiata and some other WM tracts, similar to previous findings in depression disorder. Furthermore, mean FA and RD in some of the above‐mentioned WM tracts in the SDS (+) group were correlated significantly with SDS scores, including the genu and splenium of the corpus callosum, the right anterior corona radiata and the superior longitudinal fasciculi. Our results suggest that WM integrity may be affected by both depression symptoms (more sensitive as RD) and migraine (more sensitive as AD). The findings may serve as a sensitive biomarker of depression severity in MWoA. Copyright
Journal of Magnetic Resonance Imaging | 2011
Yuanyuan Feng; Lijun Bai; Wensheng Zhang; Ting Xue; Yanshuang Ren; Chongguang Zhong; Hu Wang; Youbo You; Zhenyu Liu; Jianping Dai; Yijun Liu; Jie Tian
To investigate the acupoint specificity by exploring the effective connectivity patterns of the poststimulus resting brain networks modulated by acupuncture at the PC6, with the same meridian acupoint PC7 and different meridian acupoint GB37.
international conference of the ieee engineering in medicine and biology society | 2011
Yuanyuan Feng; Lijun Bai; Wensheng Zhang; Yanshuang Ren; Ting Xue; Hu Wang; Chongguang Zhong; Jie Tian
Previous neuroimaging studies on acupuncture have primarily adopted functional connectivity analysis associated with one or a few preselected brain regions. Few have investigated how these brain regions interacted at the whole brain level. In this study, we sought to investigate the acupoint specificity by exploring the whole brain functional connectivity analysis on the post-stimulus resting brain modulated by acupuncture at acupoint PC6, with the same meridian acupoint PC7 and different meridian acupoint GB37. We divided the whole brain into 90 regions and analyzed functional connectivity for each condition. Then we identified statistically significant differences in functional correlations throughout the entire brain following acupuncture at PC6 in comparison with PC7 as well as GB37. For direct comparisons, increased correlations for PC6 compared to PC7 were primarily between the prefrontal regions and the limbic/paralimbic and subcortical regions, whereas decreased correlations were mainly between the parietal regions and the limbic/paralimbic and subcortical regions. On the other hand, increased correlations for PC6 compared to GB37 were primarily between the prefrontal regions and somatosensory regions, whereas decreased correlations were mainly related with the occipital regions. Our findings demonstrated that acupuncture at different acupoints may exert heterogeneous modulatory effects on the post-stimulus resting brain, providing new evidences for the relatively function-oriented specificity of acupuncture effects.
PLOS ONE | 2012
Youbo You; Lijun Bai; Ruwei Dai; Chongguang Zhong; Ting Xue; Hu Wang; Zhenyu Liu; Wenjuan Wei; Jie Tian
As an ancient Chinese healing modality which has gained increasing popularity in modern society, acupuncture involves stimulation with fine needles inserted into acupoints. Both traditional literature and clinical data indicated that modulation effects largely depend on specific designated acupoints. However, scientific representations of acupoint specificity remain controversial. In the present study, considering the new findings on the sustained effects of acupuncture and its time-varied temporal characteristics, we employed an electrophysiological imaging modality namely magnetoencephalography with a temporal resolution on the order of milliseconds. Taken into account the differential band-limited signal modulations induced by acupuncture, we sought to explore whether or not stimulation at Stomach Meridian 36 (ST36) and a nearby non-meridian point (NAP) would evoke divergent functional connectivity alterations within delta, theta, alpha, beta and gamma bands. Whole-head scanning was performed on 28 healthy participants during an eyes-closed no-task condition both preceding and following acupuncture. Data analysis involved calculation of band-limited power (BLP) followed by pair-wise BLP correlations. Further averaging was conducted to obtain local and remote connectivity. Statistical analyses revealed the increased connection degree of the left temporal cortex within delta (0.5–4 Hz), beta (13–30 Hz) and gamma (30–48 Hz) bands following verum acupuncture. Moreover, we not only validated the closer linkage of the left temporal cortex with the prefrontal and frontal cortices, but further pinpointed that such patterns were more extensively distributed in the ST36 group in the delta and beta bands compared to the restriction only to the delta band for NAP. Psychophysical results for significant pain threshold elevation further confirmed the analgesic effect of acupuncture at ST36. In conclusion, our findings may provide a new perspective to lend support for the specificity of neural expression underlying acupuncture.