Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tinghu Zhang is active.

Publication


Featured researches published by Tinghu Zhang.


Nature | 2012

Systematic identification of genomic markers of drug sensitivity in cancer cells

Mathew J. Garnett; Elena J. Edelman; Sonja J. Heidorn; Christopher Greenman; Anahita Dastur; King Wai Lau; Patricia Greninger; I. Richard Thompson; Xi Luo; Jorge Soares; Qingsong Liu; Francesco Iorio; Didier Surdez; L Leon Chen; Randy J. Milano; Graham R. Bignell; Ah Ting Tam; Helen Davies; Jesse A. Stevenson; Syd Barthorpe; Stephen R. Lutz; Fiona Kogera; Karl Lawrence; Anne McLaren-Douglas; Xeni Mitropoulos; Tatiana Mironenko; Helen Thi; Laura Richardson; Wenjun Zhou; Frances Jewitt

Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines—which represent much of the tissue-type and genetic diversity of human cancers—with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing’s sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.


Cell | 2016

A Landscape of Pharmacogenomic Interactions in Cancer

Francesco Iorio; Theo Knijnenburg; Daniel J. Vis; Graham R. Bignell; Michael P. Menden; Michael Schubert; Nanne Aben; Emanuel Gonçalves; Syd Barthorpe; Howard Lightfoot; Thomas Cokelaer; Patricia Greninger; Ewald van Dyk; Han Chang; Heshani de Silva; Holger Heyn; Xianming Deng; Regina K. Egan; Qingsong Liu; Tatiana Mironenko; Xeni Mitropoulos; Laura Richardson; Jinhua Wang; Tinghu Zhang; Sebastian Moran; Sergi Sayols; Maryam Soleimani; David Tamborero; Nuria Lopez-Bigas; Petra Ross-Macdonald

Summary Systematic studies of cancer genomes have provided unprecedented insights into the molecular nature of cancer. Using this information to guide the development and application of therapies in the clinic is challenging. Here, we report how cancer-driven alterations identified in 11,289 tumors from 29 tissues (integrating somatic mutations, copy number alterations, DNA methylation, and gene expression) can be mapped onto 1,001 molecularly annotated human cancer cell lines and correlated with sensitivity to 265 drugs. We find that cell lines faithfully recapitulate oncogenic alterations identified in tumors, find that many of these associate with drug sensitivity/resistance, and highlight the importance of tissue lineage in mediating drug response. Logic-based modeling uncovers combinations of alterations that sensitize to drugs, while machine learning demonstrates the relative importance of different data types in predicting drug response. Our analysis and datasets are rich resources to link genotypes with cellular phenotypes and to identify therapeutic options for selected cancer sub-populations.


Mini-reviews in Medicinal Chemistry | 2008

INHIBITORS OF C-JUN-N-TERMINAL KINASE (JNK)

Nathanael S. Gray; Tinghu Zhang

Inhibitors of c-jun-N-Terminal Kinase (JNK) have many potential therapeutic indications ranging from neurodegenerative disease, to metabolic disorders, inflammation, cardiovascular disease, and cancer. This overview will highlight biological inhibitors such as JNK-interacting protein (JIP) as well as small molecule inhibitors from various structural classes including, aminopyrimidines and indazoles.


Nature Chemical Biology | 2016

Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors.

Tinghu Zhang; Nicholas Kwiatkowski; Calla M Olson; Sarah E Dixon-Clarke; Brian J. Abraham; Ann Katrin Greifenberg; Scott B. Ficarro; J.M. Elkins; Yanke Liang; Nancy M. Hannett; Theresa Manz; Mingfeng Hao; Bartlomiej Bartkowiak; Arno L. Greenleaf; Jarrod A. Marto; Matthias Geyer; Alex N. Bullock; Richard A. Young; Nathanael S. Gray

Cyclin-dependent kinases 12 and 13 (CDK12 and CDK13) play critical roles in the regulation of gene transcription. However, the absence of CDK12 and CDK13 inhibitors has hindered the ability to investigate the consequences of their inhibition in healthy cells and cancer cells. Here we describe the rational design of a first-in-class CDK12 and CDK13 covalent inhibitor, THZ531. Co-crystallization of THZ531 with CDK12-cyclin K indicates that THZ531 irreversibly targets a cysteine located outside the kinase domain. THZ531 causes a loss of gene expression with concurrent loss of elongating and hyperphosphorylated RNA polymerase II. In particular, THZ531 substantially decreases the expression of DNA damage response genes and key super-enhancer-associated transcription factor genes. Coincident with transcriptional perturbation, THZ531 dramatically induced apoptotic cell death. Small molecules capable of specifically targeting CDK12 and CDK13 may thus help identify cancer subtypes that are particularly dependent on their kinase activities.


Molecular Systems Biology | 2015

Systematic analysis of BRAFV600E melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis

Mohammad Fallahi-Sichani; Nathan J. Moerke; Mario Niepel; Tinghu Zhang; Nathanael S. Gray; Peter K. Sorger

Drugs that inhibit RAF/MEK signaling, such as vemurafenib, elicit profound but often temporary anti‐tumor responses in patients with BRAFV600E melanoma. Adaptive responses to RAF/MEK inhibition occur on a timescale of hours to days, involve homeostatic responses that reactivate MAP kinase signaling and compensatory mitogenic pathways, and attenuate the anti‐tumor effects of RAF/MEK inhibitors. We profile adaptive responses across a panel of melanoma cell lines using multiplex biochemical measurement, single‐cell assays, and statistical modeling and show that adaptation involves at least six signaling cascades that act to reduce drug potency (IC50) and maximal effect (i.e., Emax ≪ 1). Among these cascades, we identify a role for JNK/c‐Jun signaling in vemurafenib adaptation and show that RAF and JNK inhibitors synergize in cell killing. This arises because JNK inhibition prevents a subset of cells in a cycling population from becoming quiescent upon vemurafenib treatment, thereby reducing drug Emax. Our findings demonstrate the breadth and diversity of adaptive responses to RAF/MEK inhibition and a means to identify which steps in a signaling cascade are most predictive of phenotypic response.


eLife | 2017

MELK is not necessary for the proliferation of basal-like breast cancer cells

Hai-Tsang Huang; Hyuk-Soo Seo; Tinghu Zhang; Yubao Wang; Baishan Jiang; Qing Li; Dennis L. Buckley; Behnam Nabet; Justin M. Roberts; Joshiawa Paulk; Shiva Dastjerdi; Georg E. Winter; Hilary McLauchlan; Jennifer Moran; James E. Bradner; Michael J. Eck; Sirano Dhe-Paganon; Jean Zhao; Nathanael S. Gray

Thorough preclinical target validation is essential for the success of drug discovery efforts. In this study, we combined chemical and genetic perturbants, including the development of a novel selective maternal embryonic leucine zipper kinase (MELK) inhibitor HTH-01-091, CRISPR/Cas9-mediated MELK knockout, a novel chemical-induced protein degradation strategy, RNA interference and CRISPR interference to validate MELK as a therapeutic target in basal-like breast cancers (BBC). In common culture conditions, we found that small molecule inhibition, genetic deletion, or acute depletion of MELK did not significantly affect cellular growth. This discrepancy to previous findings illuminated selectivity issues of the widely used MELK inhibitor OTSSP167, and potential off-target effects of MELK-targeting short hairpins. The different genetic and chemical tools developed here allow for the identification and validation of any causal roles MELK may play in cancer biology, which will be required to guide future MELK drug discovery efforts. Furthermore, our study provides a general framework for preclinical target validation.


PLOS ONE | 2012

BAY61-3606 Affects the Viability of Colon Cancer Cells in a Genotype-Directed Manner

Ken S. Lau; Tinghu Zhang; Krystle R. Kendall; Douglas A. Lauffenburger; Nathanael S. Gray; Kevin M. Haigis

BACKGROUND K-RAS mutation poses a particularly difficult problem for cancer therapy. Activating mutations in K-RAS are common in cancers of the lung, pancreas, and colon and are associated with poor response to therapy. As such, targeted therapies that abrogate K-RAS-induced oncogenicity would be of tremendous value. METHODS We searched for small molecule kinase inhibitors that preferentially affect the growth of colorectal cancer cells expressing mutant K-RAS. The mechanism of action of one inhibitor was explored using chemical and genetic approaches. RESULTS We identified BAY61-3606 as an inhibitor of proliferation in colorectal cancer cells expressing mutant forms of K-RAS, but not in isogenic cells expressing wild-type K-RAS. In addition to its anti-proliferative effects in mutant cells, BAY61-3606 exhibited a distinct biological property in wild-type cells in that it conferred sensitivity to inhibition of RAF. In this context, BAY61-3606 acted by inhibiting MAP4K2 (GCK), which normally activates NFκβ signaling in wild-type cells in response to inhibition of RAF. As a result of MAP4K2 inhibition, wild-type cells became sensitive to AZ-628, a RAF inhibitor, when also treated with BAY61-3606. CONCLUSIONS These studies indicate that BAY61-3606 exerts distinct biological activities in different genetic contexts.


Nature Communications | 2017

THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors

Florencia Cayrol; Pannee Praditsuktavorn; Tharu Fernando; Nicholas Kwiatkowski; Rossella Marullo; M. Nieves Calvo-Vidal; Jude M. Phillip; Benet Pera; Shao Ning Yang; Kaipol Takpradit; Lidia Román; Marcello Gaudiano; Ramona Crescenzo; Jia Ruan; Giorgio Inghirami; Tinghu Zhang; Graciela Cremaschi; Nathanael S. Gray; Leandro Cerchietti

Peripheral T-cell lymphomas (PTCL) are aggressive diseases with poor response to chemotherapy and dismal survival. Identification of effective strategies to target PTCL biology represents an urgent need. Here we report that PTCL are sensitive to transcription-targeting drugs, and, in particular, to THZ1, a covalent inhibitor of cyclin-dependent kinase 7 (CDK7). The STAT-signalling pathway is highly vulnerable to THZ1 even in PTCL cells that carry the activating STAT3 mutation Y640F. In mutant cells, CDK7 inhibition decreases STAT3 chromatin binding and expression of highly transcribed target genes like MYC, PIM1, MCL1, CD30, IL2RA, CDC25A and IL4R. In surviving cells, THZ1 decreases the expression of STAT-regulated anti-apoptotic BH3 family members MCL1 and BCL-XL sensitizing PTCL cells to BH3 mimetic drugs. Accordingly, the combination of THZ1 and the BH3 mimetic obatoclax improves lymphoma growth control in a primary PTCL ex vivo culture and in two STAT3-mutant PTCL xenografts, delineating a potential targeted agent-based therapeutic option for these patients.


Oncogene | 2017

c-Jun N-terminal kinase promotes stem cell phenotype in triple-negative breast cancer through upregulation of Notch1 via activation of c-Jun

Xiaoming Xie; Tamer S. Kaoud; Ramakrishna Edupuganti; Tinghu Zhang; Takahiro Kogawa; Y. J. Zhao; Gaurav B. Chauhan; D N Giannoukos; Yuan Qi; D Tripathy; Jing Wang; Nathanael S. Gray; Kevin N. Dalby; Chandra Bartholomeusz; Naoto Ueno

c-Jun N-terminal kinase (JNK) plays a vital role in malignant transformation of different cancers, and JNK is highly activated in basal-like triple-negative breast cancer (TNBC). However, the roles of JNK in regulating cancer stem-like cell (CSC) phenotype and tumorigenesis in TNBC are not well defined. JNK is known to mediate many cellular events via activating c-Jun. Here, we found that JNK regulated c-Jun activation in TNBC cells and that JNK activation correlated with c-Jun activation in TNBC tumors. Furthermore, the expression level of c-Jun was significantly higher in TNBC tumors than in non-TNBC tumors, and high c-Jun mRNA level was associated with shorter disease-free survival of patients with TNBC. Thus, we hypothesized that the JNK/c-Jun signaling pathway contributes to TNBC tumorigenesis. We found that knockdown of JNK1 or JNK2 or treatment with JNK-IN-8, an adenosine triphosphate-competitive irreversible pan-JNK inhibitor, significantly reduced cell proliferation, the ALDH1+ and CD44+/CD24− CSC subpopulations, and mammosphere formation, indicating that JNK promotes CSC self-renewal and maintenance in TNBC. We further demonstrated that both JNK1 and JNK2 regulated Notch1 transcription via activation of c-Jun and that the JNK/c-Jun signaling pathway promoted CSC phenotype through Notch1 signaling in TNBC. In a TNBC xenograft mouse model, JNK-IN-8 significantly suppressed tumor growth in a dose-dependent manner by inhibiting acquisition of the CSC phenotype. Taken together, our data demonstrate that JNK regulates TNBC tumorigenesis by promoting CSC phenotype through Notch1 signaling via activation of c-Jun and indicate that JNK/c-Jun/Notch1 signaling is a potential therapeutic target for TNBC.


Cancer Discovery | 2018

Suppression of Adaptive Responses to Targeted Cancer Therapy by Transcriptional Repression

Maria Rusan; Kapsok Li; Yvonne Y. Li; Camilla L. Christensen; Brian J. Abraham; Nicholas Kwiatkowski; Kevin A. Buczkowski; Bruno Bockorny; Ting Chen; Shuai Li; Kevin Rhee; Haikuo Zhang; Wankun Chen; Hideki Terai; Tiffany Tavares; Alan L. Leggett; Tianxia Li; Yichen Wang; Tinghu Zhang; Tae-Jung Kim; Sook-Hee Hong; Neermala Poudel-Neupane; Michael Silkes; Tenny Mudianto; Li Tan; Takeshi Shimamura; Matthew Meyerson; Adam J. Bass; Hideo Watanabe; Nathanael S. Gray

Acquired drug resistance is a major factor limiting the effectiveness of targeted cancer therapies. Targeting tumors with kinase inhibitors induces complex adaptive programs that promote the persistence of a fraction of the original cell population, facilitating the eventual outgrowth of inhibitor-resistant tumor clones. We show that the addition of a newly identified CDK7/12 inhibitor, THZ1, to targeted therapy enhances cell killing and impedes the emergence of drug-resistant cell populations in diverse cellular and in vivo cancer models. We propose that targeted therapy induces a state of transcriptional dependency in a subpopulation of cells poised to become drug tolerant, which THZ1 can exploit by blocking dynamic transcriptional responses, promoting remodeling of enhancers and key signaling outputs required for tumor cell survival in the setting of targeted therapy. These findings suggest that the addition of THZ1 to targeted therapies is a promising broad-based strategy to hinder the emergence of drug-resistant cancer cell populations.Significance: CDK7/12 inhibition prevents active enhancer formation at genes, promoting resistance emergence in response to targeted therapy, and impedes the engagement of transcriptional programs required for tumor cell survival. CDK7/12 inhibition in combination with targeted cancer therapies may serve as a therapeutic paradigm for enhancing the effectiveness of targeted therapies. Cancer Discov; 8(1); 59-73. ©2017 AACR.See related commentary by Carugo and Draetta, p. 17This article is highlighted in the In This Issue feature, p. 1.

Collaboration


Dive into the Tinghu Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard A. Young

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Brian J. Abraham

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge