Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tingjin Chen is active.

Publication


Featured researches published by Tingjin Chen.


Parasitology Research | 2015

Clonorchis sinensis ferritin heavy chain triggers free radicals and mediates inflammation signaling in human hepatic stellate cells

Qiang Mao; Zhizhi Xie; Xiaoyun Wang; Wenjun Chen; Mengyu Ren; Mei Shang; Huali Lei; Yanli Tian; Shan Li; Pei Liang; Tingjin Chen; Chi Liang; Jin Xu; Xuerong Li; Yan Huang; Xinbing Yu

Clonorchiasis, caused by direct and continuous contact with Clonorchis sinensis, is associated with hepatobiliary damage, inflammation, periductal fibrosis, and the development of cholangiocarcinoma. Hepatic stellate cells respond to liver injury through production of proinflammatory mediators which drive fibrogenesis; however, their endogenous sources and pathophysiological roles in host cells were not determined. C. sinensis ferritin heavy chain (CsFHC) was previously confirmed as a component of excretory/secretory products and exhibited a number of extrahepatic immunomodulatory properties in various diseases. In this study, we investigated the expression pattern and biological role of CsFHC in C. sinensis. CsFHC was expressed throughout life stages of C. sinensis. More importantly, we found that treatment of human hepatic stellate cell line LX-2 with CsFHC triggered the production of free radicals via time-dependent activation of NADPH oxidase, xanthine oxidase, and inducible nitric oxide synthase. The increase in free radicals substantially promoted the degradation of cytosolic IκBα and nuclear translocation of NF-κB subunits (p65 and p50). CsFHC-induced NF-κB activation was markedly attenuated by preincubation with specific inhibitors of corresponding free radical-producing enzyme or the antioxidant. In addition, CsFHC induced an increased expression level of proinflammatory cytokines, IL-1β and IL-6, in NF-κB-dependent manner. Our results indicate that CsFHC-triggered free radical-mediated NF-κB signaling is an important factor in the chronic inflammation caused by C. sinensis infection.


Parasitology Research | 2015

Oral delivery of Bacillus subtilis spore expressing enolase of Clonorchis sinensis in rat model: induce systemic and local mucosal immune responses and has no side effect on liver function.

Jinyun Yu; Tingjin Chen; Zhizhi Xie; Pei Liang; Honglin Qu; Mei Shang; Qiang Mao; Dan Ning; Zeli Tang; Mengchen Shi; Lina Zhou; Yan Huang; Xinbing Yu

Caused by the consumption of raw or undercooked freshwater fish containing infective metacercariae of Clonorchis sinensis, human clonorchiasis remains a major public health problem in China. In previous study, we had expressed enolase from C. sinensis (CsENO) on the surface of Bacillus subtilis spore and the recombinant spore induced a pronounced protection in terms of reduced worm burden and eggs per gram feces, suggesting B. subtilis spore as an ideal vehicle for antigen delivery by oral treatment and CsENO as a promising vaccine candidate against clonorchiasis. In the current study, we detected CsENO-specific IgG and IgA levels both in serum and in intestinal mucus from rats orally administrated with B. subtilis spore surface expressing CsENO by ELISA. Lysozyme levels in serum and in intestinal mucus were analyzed too. In addition, IgA-secreting cells in intestine epithelium of the rats were detected by immunohistochemistry assay. The intestinal villi lengths of duodenum, jejunum, and ileum were also measured. Rats orally treated with B. subtilis spore or normal saline were used as controls. Our results showed that, compared with the control groups, oral administration of B. subtilis spore expressing CsENO induced both systemic and local mucosal immune response. The recombinant spores also enhanced non-specific immune response in rats. The spores had no side effect on liver function. Moreover, it might facilitate food utilization and digestion of the rats. Our work will pave the way to clarify the involved mechanisms of protective efficacy elicited by B. subtilis spore expressing CsENO and encourage us to carry out more assessment trails of the oral treated spore to develop vaccine against clonorchiasis.


PLOS Neglected Tropical Diseases | 2015

Advanced Enzymology, Expression Profile and Immune Response of Clonorchis sinensis Hexokinase Show Its Application Potential for Prevention and Control of Clonorchiasis

Tingjin Chen; Jinyun Yu; Zeli Tang; Zhizhi Xie; Zhipeng Lin; Hengchang Sun; Shuo Wan; Xuerong Li; Yan Huang; Xinbing Yu; Jin Xu

Background Approximately 35 million people are infected with Clonorchis sinensis (C. sinensis) globally, of whom 15 million are in China. Glycolytic enzymes are recognized as crucial molecules for trematode survival and have been targeted for vaccine and drug development. Hexokinase of C. sinensis (CsHK), as the first key regulatory enzyme of the glycolytic pathway, was investigated in the current study. Principal Findings There were differences in spatial structure and affinities for hexoses and phosphate donors between CsHK and HKs from humans or rats, the definitive hosts of C. sinensis. Effectors (AMP, PEP, and citrate) and a small molecular inhibitor regulated the enzymatic activity of rCsHK, and various allosteric systems were detected. CsHK was distributed in the worm extensively as well as in liver tissue and serum from C. sinensis infected rats. Furthermore, high-level specific IgG1 and IgG2a were induced in rats by immunization with rCsHK. The enzymatic activity of CsHK was suppressed by the antibody in vitro. Additionally, the survival of C. sinensis was inhibited by the antibody in vivo and in vitro. Conclusions/Significance Due to differences in putative spatial structure and enzymology between CsHK and HK from the host, its extensive distribution in adult worms, and its expression profile as a component of excretory/secretory products, together with its good immunogenicity and immunoreactivity, as a key glycolytic enzyme, CsHK shows potential as a vaccine and as a promising drug target for Clonorchiasis.


Parasitology Research | 2016

Clonorchis sinensis lysophospholipase inhibits TGF-β1-induced expression of pro-fibrogenic genes through attenuating the activations of Smad3, JNK2, and ERK1/2 in hepatic stellate cell line LX-2.

Lina Zhou; Mei Shang; Mengchen Shi; Lu Zhao; Zhipeng Lin; Tingjin Chen; Yinjuan Wu; Zeli Tang; Hengchang Sun; Jinyun Yu; Yan Huang; Xinbing Yu

Liver fibrosis is a wound healing response associated with chronic liver injury. Hepatic stellate cells (HSCs) activation is a key event in the development of liver fibrosis. Since helminths have the ability to live for decades in the host by establishing an adaptive relationship in the interplay with its hosts, we hypothesize that whether Clonochis sinensis LysophospholipaseA (CsLysoPLA), a component of excretory/secretory proteins, can attenuate the fibrogenic response by inhibiting activation of LX-2 cells, thereby balancing the pro-fibrotic and anti-fibrotic response during the Clonochis sinensis (C. sinensis) infection. In the present study, LX-2 cells were stimulated with CsLysoPLA in the presence of TGF-β1, and the expressions of collagen type I (COL1A1), α-smooth muscle actin (α-SMA), and matrix metalloproteinase 2 (MMP2) were decreased. In addition, CsLysoPLA significantly inhibited the proliferation and migration of LX-2 cells stimulated by TGF-β1. Pretreatment of LX-2 cells with CsLysoPLA attenuated the phosphorylation of Smad3 as well as JNK2 and ERK1/2 in response to the stimulation of TGF-β1. For the first time, our results showed an anti-fibrogenic effect of CsLysoPLA by attenuating the response of LX-2 cells to TGF-β1 through inhibiting the activations of Smad3, ERK1/2, and JNK2.


PLOS ONE | 2014

Sequence Analysis and Molecular Characterization of Clonorchis sinensis Hexokinase, an Unusual Trimeric 50-kDa Glucose-6-Phosphate-Sensitive Allosteric Enzyme

Tingjin Chen; Dan Ning; Hengchang Sun; Ran Li; Mei Shang; Xuerong Li; Xiaoyun Wang; Wenjun Chen; Chi Liang; Wenfang Li; Qiang Mao; Ye Li; Chuanhuan Deng; Lexun Wang; Zhongdao Wu; Yan Huang; Jin Xu; Xinbing Yu

Clonorchiasis, which is induced by the infection of Clonorchis sinensis (C. sinensis), is highly associated with cholangiocarcinoma. Because the available examination, treatment and interrupting transmission provide limited opportunities to prevent infection, it is urgent to develop integrated strategies to prevent and control clonorchiasis. Glycolytic enzymes are crucial molecules for trematode survival and have been targeted for drug development. Hexokinase of C. sinensis (CsHK), the first key regulatory enzyme of the glycolytic pathway, was characterized in this study. The calculated molecular mass (Mr) of CsHK was 50.0 kDa. The obtained recombinant CsHK (rCsHK) was a homotrimer with an Mr of approximately 164 kDa, as determined using native PAGE and gel filtration. The highest activity was obtained with 50 mM glycine-NaOH at pH 10 and 100 mM Tris-HCl at pH 8.5 and 10. The kinetics of rCsHK has a moderate thermal stability. Compared to that of the corresponding negative control, the enzymatic activity was significantly inhibited by praziquantel (PZQ) and anti-rCsHK serum. rCsHK was homotropically and allosterically activated by its substrates, including glucose, mannose, fructose, and ATP. ADP exhibited mixed allosteric effect on rCsHK with respect to ATP, while inorganic pyrophosphate (PPi) displayed net allosteric activation with various allosteric systems. Fructose behaved as a dose-dependent V activator with the substrate glucose. Glucose-6-phosphate (G6P) displayed net allosteric inhibition on rCsHK with respect to ATP or glucose with various allosteric systems in a dose-independent manner. There were differences in both mRNA and protein levels of CsHK among the life stages of adult worm, metacercaria, excysted metacercaria and egg of C. sinensis, suggesting different energy requirements during different development stages. Our study furthers the understanding of the biological functions of CsHK and supports the need to screen for small molecule inhibitors of CsHK to interfere with glycolysis in C. sinensis.


Parasites & Vectors | 2016

The immunological characteristics and probiotic function of recombinant Bacillus subtilis spore expressing Clonorchis sinensis cysteine protease

Zeli Tang; Mei Shang; Tingjin Chen; Pengli Ren; Hengchang Sun; Hongling Qu; Zhipeng Lin; Lina Zhou; Jinyun Yu; Hongye Jiang; Xinyi Zhou; Xuerong Li; Yan Huang; Jin Xu; Xinbing Yu

BackgroundClonorchiasis, a food-borne zoonosis, is caused by Clonorchis sinensis. The intestinal tract and bile ducts are crucial places for C. sinensis metacercariae to develop into adult worms. The endospore of Bacillus subtilis is an ideal oral immunization vehicle for delivery of heterologous antigens to intestine. Cysteine protease of C. sinensis (CsCP) is an endogenous key component in the excystment of metacercariae and other physiological or pathological processes.MethodsWe constructed a fusion gene of CotC (a coat protein)-CsCP and obtained B. subtilis spores with recombinant plasmid of pEB03-CotC-CsCP (B.s-CotC-CsCP). CotC-CsCP expressed on spores’ surface was detected by Western blotting and immunofluorescence. Immunological characteristics of recombinant spore coat protein were evaluated in a mouse model. The levels of CsCP-specific antibodies were detected by ELISA. Effects of recombinant spores on mouse intestine were evaluated by histological staining. The activities of biochemical enzymes in serum were assayed by microplate. Liver sections of infected mice were evaluated by Ishak score after Masson’s trichrome.ResultsThe B.s-CotC-CsCP spores displayed CsCP on their coat. Specific IgG and isotypes were significantly induced by coat proteins of B.s-CotC-CsCP spores after subcutaneous immunization. IgA levels in intestinal mucus and bile of B.s-CotC-CsCP orally treated mice significantly increased. Additionally, more IgA-secreting cells were observed in enteraden and lamina propria regions of the mouse jejunum, and an increased amount of acidic mucins in intestines were also observed. There were no significant differences in enzyme levels of serum among groups. No inflammatory injury was observed in the intestinal tissues of each group. The degree of liver fibrosis was significantly reduced after oral immunization with B.s-CotC-CsCP spores.ConclusionsBacillus subtilis spores maintained the original excellent immunogenicity of CsCP expressed on their surface. Both local and systemic specific immune responses were elicited by oral administration of B.s-CotC-CsCP spores. The spores effectively promoted intestinal health by inducing secretion of acidic mucins, with no other side effects to the liver or intestine. Oral administration of spores expressing CsCP could provide effective protection against C. sinensis. This study may be a cornerstone for development of antiparasitic agents or vaccines against clonorchiasis based on B. subtilis spore expressing CsCP on the surface.


Fish & Shellfish Immunology | 2017

Immune response induced by oral delivery of Bacillus subtilis spores expressing enolase of Clonorchis sinensis in grass carps (Ctenopharyngodon idellus)

Hongye Jiang; Tingjin Chen; Hengchang Sun; Zeli Tang; Jinyun Yu; Zhipeng Lin; Pengli Ren; Xinyi Zhou; Yan Huang; Xuerong Li; Xinbing Yu

ABSTRACT Clonorchiasis, caused by the consumption of raw or undercooked freshwater fish containing infective metacercariae of Clonorchis sinensisis (C.sinensis), remains a common public health problem. New effective prevention strategies are still urgent to control this food‐borne infectious disease. The previous studies suggested Bacillus subtilis (B. subtilis) spores was an ideal vaccines delivery system, and the C.sinensis enolase (CsENO) was a potential vaccine candidate against clonorchiasis. In the current study, we detected CsENO‐specific IgM levels by ELISA in sera, intestinal mucus and skin mucus in grass carps (Ctenopharyngodon idella) through oral administration with B. subtilis spores surface expressing CsENO. In addition, immune‐related genes expression was also measured by qRT‐PCR. Grass carps orally treated with B. subtilis spores or normal forages were used as controls. The results of ELISA manifested that specific IgM levels of grass carps in CsENO group in sera, intestine mucus and skin mucus almost significantly increased from week 4 post the first oral administration when compared to the two control groups. The levels of specific IgM reached its peak in intestine mucus firstly, then in sera, and last in skin mucus. qRT‐PCR results showed that 5 immune‐related genes expression had different degree of rising trend in CsENO group when compared to the two control groups. Our study demonstrated that orally administrated with B. subtilis spores expressing CsENO induced innate and adaptive immunity, systemic and local mucosal immunity, and humoral and cellular immunity. Our work may pave the way to clarify the exact mechanisms of protective efficacy elicited by B. subtilis spores expressing CsENO and provide new ideas for vaccine development against C. sinensis infection. HIGHLIGHTSApply Bacillus subtilis spores as delivery system to fish for the first time.Focus on freshwater fish to prevent clonorchiasis for the first time.Preliminary clarify immunological mechanism of the recombinant spores.Provide a new idea about cutting off the spreading approach of clonorchiosis.


PLOS Neglected Tropical Diseases | 2016

Clonorchis sinensis Co-infection Could Affect the Disease State and Treatment Response of HBV Patients

Wenfang Li; Huimin Dong; Yan Huang; Tingjin Chen; Xiangzhan Kong; Hengchang Sun; Xinbing Yu; Jin Xu

Background Clonorchis sinensis (C. sinensis) is considered to be an important parasitic zoonosis because it infects approximately 35 million people, while approximately 15 million were distributed in China. Hepatitis B virus (HBV) infection is a major public health issue. Two types of pathogens have the potential to cause human liver disease and eventually hepatocellular carcinoma. Concurrent infection with HBV and C. sinensis is often observed in some areas where C. sinensis is endemic. However, whether C. sinensis could impact HBV infection or vice versa remains unknown. Principal Findings Co-infection with C. sinensis and HBV develops predominantly in males. Co-infected C. sinensis and HBV patients presented weaker liver function and higher HBV DNA titers. Combination treatment with antiviral and anti-C. sinensis drugs in co-infected patients could contribute to a reduction in viral load and help with liver function recovery. Excretory-secretory products (ESPs) may, in some ways, increase HBV viral replication in vitro. A mixture of ESP and HBV positive sera could induce peripheral blood mononuclear cells (PBMCs) to produce higher level of Th2 cytokines including IL-4, IL-6 and IL-10 compared to HBV alone, it seems that due to presence of ESP, the cytokine production shift towards Th2. C. sinensis/HBV co-infected patients showed higher serum IL-6 and IL-10 levels and lower serum IFN-γ levels. Conclusions/Significance Patients with concomitant C. sinensis and HBV infection presented weaker liver function and higher HBV DNA copies. In co-infected patients, the efficacy of anti-viral treatment was better in patients who were prescribed with entecavir and praziquantel than entecavir alone. One possible reason for the weaker response to antiviral therapies in co-infected patients was the shift in cytokine production from Th1 to Th2 that may inhibit viral clearance. C. sinensis/HBV co-infection could exacerbate the imbalance of Th1/Th2 cytokine.


Parasitology Research | 2013

Molecular characterization and expression of Rab7 from Clonorchis sinensis and its potential role in autophagy.

Feifei Jia; Ye Li; Yan Huang; Tingjin Chen; Shan Li; Yanquan Xu; Zhongdao Wu; Xuerong Li; Xinbing Yu

Accumulating evidences suggest that Rab7 GTPase is important for the normal progression of autophagy. However, the role of Rab7 GTPase in regulation of autophagy in Clonorchis sinensis is not known. In this study, a gene encoding Rab7 was isolated from C. sinensis adult cDNA. Recombinant CsRab7 was expressed and purified from Escherichia coli. CsRab7 transcripts were detected in the cDNA of adult worm, metacercaria, cercaria, and egg of C. sinensis, and were highly expressed in the metacercaria. Immunohistochemical localization results revealed that CsRab7 was specifically deposited on the vitellarium and eggs of adult worm. Furthermore, EGFP signal of CsRab7WT and the active mutant CsRab7Q67L were associated with autophagic vesicles in transiently transfected 293T cells. It is concluded from the present study that CsRab7 GTPase possibly contributes to the development of C. sinensis and that the autophagy pathway could be an important site of action with respect to the developmental role of CsRab7 in C. sinensis.


Parasites & Vectors | 2017

Clonorchis sinensis lysophospholipase A upregulates IL-25 expression in macrophages as a potential pathway to liver fibrosis

Lina Zhou; Mengchen Shi; Lu Zhao; Zhipeng Lin; Zeli Tang; Hengchang Sun; Tingjin Chen; Zhiyue Lv; Jin Xu; Yan Huang; Xinbing Yu

BackgroundLiver fibrosis is an excessive wound-healing reaction that requires the participation of inflammatory cells and hepatic stellate cells (HSCs). The pathogenesis of liver fibrosis caused by viruses and alcohol has been well characterized, but the molecular mechanisms underlying liver fibrosis induced by the liver fluke Clonorchis sinensis are poorly understood. Lysophospholipase A (LysoPLA), which deacylates lysophospholipids, plays a critical role in mediating the virulence and pathogenesis of parasites and fungi; however, the roles of C. sinensis lysophospholipase A (CsLysoPLA) in C. sinensis-induced liver fibrosis remain unknown.MethodsA mouse macrophage cell line (RAW264.7) was cultured and treated with CsLysoPLA. IL-25 and members of its associated signaling pathway were detected by performing quantitative real-time PCR, Western blotting and immunofluorescent staining. A human hepatic stellate cell line (LX-2) was cultured and exposed to IL-25. LX-2 cell activation markers were examined via quantitative real-time PCR, Western blotting and immunofluorescent staining. Migration was analyzed in transwell plates.ResultsTreating RAW264.7 cells with CsLysoPLA significantly induced IL-25 expression. Elevated PKA, B-Raf, and ERK1/2 mRNA levels and phosphorylated B-Raf and ERK1/2 were detected in CsLysoPLA-stimulated RAW264.7 cells. The PKA inhibitor H-89 weakened B-Raf and ERK1/2 phosphorylation whereas the AKT activator SC79 attenuated ERK1/2 phosphorylation in RAW264.7 cells. Both H-89 and SC79 inhibited CsLysoPLA-induced IL-25 upregulation. In addition, stimulation of LX-2 cells with IL-25 upregulated the expression of mesenchymal cell markers, including α-smooth muscle actin (α-SMA) and collagen type I (Collagen-I), and promoted cell migration.ConclusionsCsLysoPLA activates HSCs by upregulating IL-25 in macrophages through the PKA-dependent B-Raf/ERK1/2 pathway and potentially promotes hepatic fibrosis during C. sinensis infection.

Collaboration


Dive into the Tingjin Chen's collaboration.

Top Co-Authors

Avatar

Xinbing Yu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yan Huang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Xuerong Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin Xu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Mei Shang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Zeli Tang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Zhipeng Lin

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Lina Zhou

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Lu Zhao

Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge