Zeli Tang
Sun Yat-sen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zeli Tang.
Infectious Diseases of Poverty | 2016
Zeli Tang; Yan Huang; Xinbing Yu
Clonorchiasis, caused by Clonorchis sinensis (C. sinensis), is an important food-borne parasitic disease and one of the most common zoonoses. Currently, it is estimated that more than 200 million people are at risk of C. sinensis infection, and over 15 million are infected worldwide. C. sinensis infection is closely related to cholangiocarcinoma (CCA), fibrosis and other human hepatobiliary diseases; thus, clonorchiasis is a serious public health problem in endemic areas. This article reviews the current knowledge regarding the epidemiology, disease burden and treatment of clonorchiasis as well as summarizes the techniques for detecting C. sinensis infection in humans and intermediate hosts and vaccine development against clonorchiasis. Newer data regarding the pathogenesis of clonorchiasis and the genome, transcriptome and secretome of C. sinensis are collected, thus providing perspectives for future studies. These advances in research will aid the development of innovative strategies for the prevention and control of clonorchiasis.
Parasitology Research | 2014
Hongling Qu; Yanquan Xu; Hengchang Sun; Jinsi Lin; Jinyun Yu; Zeli Tang; Ji-Qing Shen; Chi Liang; Shan Li; Wenjun Chen; Xuerong Li; Zhongdao Wu; Yan Huang; Xinbing Yu
Human clonorchiasis caused by Clonorchis sinensis (C. sinensis) has been increasingly prevalent in recent years so that an effective measure is essential and urgent to control the infectious disease. Oral delivery of antigens from C. sinensis may be an important approach to effectively induce both systemic and local immune responses to anti-infection of the parasite. In the current study, we used Bacillus subtilis (B. subtilis) spores as a delivery vehicle to introduce leucine aminopeptidase 2 of C. sinensis (CsLAP2), an excretory/secretory antigen with high immunogenicity, expressing on their surface. SDS-PAGE, western blotting, and flow cytometry indicated that CsLAP2 was successfully expressed on the surface of B. subtilis spores (CotC-CsLAP2 spores). BALB/c mice were treated with spores intragastrically. On day 31 after the treatment, we found that mice intragastrically treated with CotC-CsLAP2 spores exhibited higher IgG, IgG1, IgG2a, and IgA level in sera as well as higher sIgA level in bile and intestinal lavage fluid compared to mice orally administrated with spores not expressing CsLAP2 (CotC spores) and naïve mice. The peak titer of IgG/IgA presented on day 31/49 after oral administration. IgG1 level was lower than IgG2a in group administrated with CotC-CsLAP2 spores. sIgA-secreting cells were obviously observed in intestinal epithelium of mice orally treated with CotC-CsLAP2 spores. After incubated with CotC-CsLAP2, the levels of IFN-γ, IL-6, IL-10, IL-17A, and TNF significantly increased in the supernatant of splenocytes isolated from mice orally treated with CotC-CsLAP2 spores, while there was no statistically significant difference of IL-4 level representing Th2 response among the groups. Our study demonstrated that oral administration of CsLAP2 delivered by B. subtilis spore elicited obvious systemic and local mucosal immunity. Secretory IgA and Th1-Th17 cellular immunity might involved in mechanisms of the immune response.
Parasitology Research | 2015
Jinyun Yu; Tingjin Chen; Zhizhi Xie; Pei Liang; Honglin Qu; Mei Shang; Qiang Mao; Dan Ning; Zeli Tang; Mengchen Shi; Lina Zhou; Yan Huang; Xinbing Yu
Caused by the consumption of raw or undercooked freshwater fish containing infective metacercariae of Clonorchis sinensis, human clonorchiasis remains a major public health problem in China. In previous study, we had expressed enolase from C. sinensis (CsENO) on the surface of Bacillus subtilis spore and the recombinant spore induced a pronounced protection in terms of reduced worm burden and eggs per gram feces, suggesting B. subtilis spore as an ideal vehicle for antigen delivery by oral treatment and CsENO as a promising vaccine candidate against clonorchiasis. In the current study, we detected CsENO-specific IgG and IgA levels both in serum and in intestinal mucus from rats orally administrated with B. subtilis spore surface expressing CsENO by ELISA. Lysozyme levels in serum and in intestinal mucus were analyzed too. In addition, IgA-secreting cells in intestine epithelium of the rats were detected by immunohistochemistry assay. The intestinal villi lengths of duodenum, jejunum, and ileum were also measured. Rats orally treated with B. subtilis spore or normal saline were used as controls. Our results showed that, compared with the control groups, oral administration of B. subtilis spore expressing CsENO induced both systemic and local mucosal immune response. The recombinant spores also enhanced non-specific immune response in rats. The spores had no side effect on liver function. Moreover, it might facilitate food utilization and digestion of the rats. Our work will pave the way to clarify the involved mechanisms of protective efficacy elicited by B. subtilis spore expressing CsENO and encourage us to carry out more assessment trails of the oral treated spore to develop vaccine against clonorchiasis.
PLOS Neglected Tropical Diseases | 2015
Tingjin Chen; Jinyun Yu; Zeli Tang; Zhizhi Xie; Zhipeng Lin; Hengchang Sun; Shuo Wan; Xuerong Li; Yan Huang; Xinbing Yu; Jin Xu
Background Approximately 35 million people are infected with Clonorchis sinensis (C. sinensis) globally, of whom 15 million are in China. Glycolytic enzymes are recognized as crucial molecules for trematode survival and have been targeted for vaccine and drug development. Hexokinase of C. sinensis (CsHK), as the first key regulatory enzyme of the glycolytic pathway, was investigated in the current study. Principal Findings There were differences in spatial structure and affinities for hexoses and phosphate donors between CsHK and HKs from humans or rats, the definitive hosts of C. sinensis. Effectors (AMP, PEP, and citrate) and a small molecular inhibitor regulated the enzymatic activity of rCsHK, and various allosteric systems were detected. CsHK was distributed in the worm extensively as well as in liver tissue and serum from C. sinensis infected rats. Furthermore, high-level specific IgG1 and IgG2a were induced in rats by immunization with rCsHK. The enzymatic activity of CsHK was suppressed by the antibody in vitro. Additionally, the survival of C. sinensis was inhibited by the antibody in vivo and in vitro. Conclusions/Significance Due to differences in putative spatial structure and enzymology between CsHK and HK from the host, its extensive distribution in adult worms, and its expression profile as a component of excretory/secretory products, together with its good immunogenicity and immunoreactivity, as a key glycolytic enzyme, CsHK shows potential as a vaccine and as a promising drug target for Clonorchiasis.
Parasitology Research | 2016
Lina Zhou; Mei Shang; Mengchen Shi; Lu Zhao; Zhipeng Lin; Tingjin Chen; Yinjuan Wu; Zeli Tang; Hengchang Sun; Jinyun Yu; Yan Huang; Xinbing Yu
Liver fibrosis is a wound healing response associated with chronic liver injury. Hepatic stellate cells (HSCs) activation is a key event in the development of liver fibrosis. Since helminths have the ability to live for decades in the host by establishing an adaptive relationship in the interplay with its hosts, we hypothesize that whether Clonochis sinensis LysophospholipaseA (CsLysoPLA), a component of excretory/secretory proteins, can attenuate the fibrogenic response by inhibiting activation of LX-2 cells, thereby balancing the pro-fibrotic and anti-fibrotic response during the Clonochis sinensis (C. sinensis) infection. In the present study, LX-2 cells were stimulated with CsLysoPLA in the presence of TGF-β1, and the expressions of collagen type I (COL1A1), α-smooth muscle actin (α-SMA), and matrix metalloproteinase 2 (MMP2) were decreased. In addition, CsLysoPLA significantly inhibited the proliferation and migration of LX-2 cells stimulated by TGF-β1. Pretreatment of LX-2 cells with CsLysoPLA attenuated the phosphorylation of Smad3 as well as JNK2 and ERK1/2 in response to the stimulation of TGF-β1. For the first time, our results showed an anti-fibrogenic effect of CsLysoPLA by attenuating the response of LX-2 cells to TGF-β1 through inhibiting the activations of Smad3, ERK1/2, and JNK2.
Parasites & Vectors | 2016
Zeli Tang; Mei Shang; Tingjin Chen; Pengli Ren; Hengchang Sun; Hongling Qu; Zhipeng Lin; Lina Zhou; Jinyun Yu; Hongye Jiang; Xinyi Zhou; Xuerong Li; Yan Huang; Jin Xu; Xinbing Yu
BackgroundClonorchiasis, a food-borne zoonosis, is caused by Clonorchis sinensis. The intestinal tract and bile ducts are crucial places for C. sinensis metacercariae to develop into adult worms. The endospore of Bacillus subtilis is an ideal oral immunization vehicle for delivery of heterologous antigens to intestine. Cysteine protease of C. sinensis (CsCP) is an endogenous key component in the excystment of metacercariae and other physiological or pathological processes.MethodsWe constructed a fusion gene of CotC (a coat protein)-CsCP and obtained B. subtilis spores with recombinant plasmid of pEB03-CotC-CsCP (B.s-CotC-CsCP). CotC-CsCP expressed on spores’ surface was detected by Western blotting and immunofluorescence. Immunological characteristics of recombinant spore coat protein were evaluated in a mouse model. The levels of CsCP-specific antibodies were detected by ELISA. Effects of recombinant spores on mouse intestine were evaluated by histological staining. The activities of biochemical enzymes in serum were assayed by microplate. Liver sections of infected mice were evaluated by Ishak score after Masson’s trichrome.ResultsThe B.s-CotC-CsCP spores displayed CsCP on their coat. Specific IgG and isotypes were significantly induced by coat proteins of B.s-CotC-CsCP spores after subcutaneous immunization. IgA levels in intestinal mucus and bile of B.s-CotC-CsCP orally treated mice significantly increased. Additionally, more IgA-secreting cells were observed in enteraden and lamina propria regions of the mouse jejunum, and an increased amount of acidic mucins in intestines were also observed. There were no significant differences in enzyme levels of serum among groups. No inflammatory injury was observed in the intestinal tissues of each group. The degree of liver fibrosis was significantly reduced after oral immunization with B.s-CotC-CsCP spores.ConclusionsBacillus subtilis spores maintained the original excellent immunogenicity of CsCP expressed on their surface. Both local and systemic specific immune responses were elicited by oral administration of B.s-CotC-CsCP spores. The spores effectively promoted intestinal health by inducing secretion of acidic mucins, with no other side effects to the liver or intestine. Oral administration of spores expressing CsCP could provide effective protection against C. sinensis. This study may be a cornerstone for development of antiparasitic agents or vaccines against clonorchiasis based on B. subtilis spore expressing CsCP on the surface.
Fish & Shellfish Immunology | 2017
Hongye Jiang; Tingjin Chen; Hengchang Sun; Zeli Tang; Jinyun Yu; Zhipeng Lin; Pengli Ren; Xinyi Zhou; Yan Huang; Xuerong Li; Xinbing Yu
ABSTRACT Clonorchiasis, caused by the consumption of raw or undercooked freshwater fish containing infective metacercariae of Clonorchis sinensisis (C.sinensis), remains a common public health problem. New effective prevention strategies are still urgent to control this food‐borne infectious disease. The previous studies suggested Bacillus subtilis (B. subtilis) spores was an ideal vaccines delivery system, and the C.sinensis enolase (CsENO) was a potential vaccine candidate against clonorchiasis. In the current study, we detected CsENO‐specific IgM levels by ELISA in sera, intestinal mucus and skin mucus in grass carps (Ctenopharyngodon idella) through oral administration with B. subtilis spores surface expressing CsENO. In addition, immune‐related genes expression was also measured by qRT‐PCR. Grass carps orally treated with B. subtilis spores or normal forages were used as controls. The results of ELISA manifested that specific IgM levels of grass carps in CsENO group in sera, intestine mucus and skin mucus almost significantly increased from week 4 post the first oral administration when compared to the two control groups. The levels of specific IgM reached its peak in intestine mucus firstly, then in sera, and last in skin mucus. qRT‐PCR results showed that 5 immune‐related genes expression had different degree of rising trend in CsENO group when compared to the two control groups. Our study demonstrated that orally administrated with B. subtilis spores expressing CsENO induced innate and adaptive immunity, systemic and local mucosal immunity, and humoral and cellular immunity. Our work may pave the way to clarify the exact mechanisms of protective efficacy elicited by B. subtilis spores expressing CsENO and provide new ideas for vaccine development against C. sinensis infection. HIGHLIGHTSApply Bacillus subtilis spores as delivery system to fish for the first time.Focus on freshwater fish to prevent clonorchiasis for the first time.Preliminary clarify immunological mechanism of the recombinant spores.Provide a new idea about cutting off the spreading approach of clonorchiosis.
Parasites & Vectors | 2017
Lina Zhou; Mengchen Shi; Lu Zhao; Zhipeng Lin; Zeli Tang; Hengchang Sun; Tingjin Chen; Zhiyue Lv; Jin Xu; Yan Huang; Xinbing Yu
BackgroundLiver fibrosis is an excessive wound-healing reaction that requires the participation of inflammatory cells and hepatic stellate cells (HSCs). The pathogenesis of liver fibrosis caused by viruses and alcohol has been well characterized, but the molecular mechanisms underlying liver fibrosis induced by the liver fluke Clonorchis sinensis are poorly understood. Lysophospholipase A (LysoPLA), which deacylates lysophospholipids, plays a critical role in mediating the virulence and pathogenesis of parasites and fungi; however, the roles of C. sinensis lysophospholipase A (CsLysoPLA) in C. sinensis-induced liver fibrosis remain unknown.MethodsA mouse macrophage cell line (RAW264.7) was cultured and treated with CsLysoPLA. IL-25 and members of its associated signaling pathway were detected by performing quantitative real-time PCR, Western blotting and immunofluorescent staining. A human hepatic stellate cell line (LX-2) was cultured and exposed to IL-25. LX-2 cell activation markers were examined via quantitative real-time PCR, Western blotting and immunofluorescent staining. Migration was analyzed in transwell plates.ResultsTreating RAW264.7 cells with CsLysoPLA significantly induced IL-25 expression. Elevated PKA, B-Raf, and ERK1/2 mRNA levels and phosphorylated B-Raf and ERK1/2 were detected in CsLysoPLA-stimulated RAW264.7 cells. The PKA inhibitor H-89 weakened B-Raf and ERK1/2 phosphorylation whereas the AKT activator SC79 attenuated ERK1/2 phosphorylation in RAW264.7 cells. Both H-89 and SC79 inhibited CsLysoPLA-induced IL-25 upregulation. In addition, stimulation of LX-2 cells with IL-25 upregulated the expression of mesenchymal cell markers, including α-smooth muscle actin (α-SMA) and collagen type I (Collagen-I), and promoted cell migration.ConclusionsCsLysoPLA activates HSCs by upregulating IL-25 in macrophages through the PKA-dependent B-Raf/ERK1/2 pathway and potentially promotes hepatic fibrosis during C. sinensis infection.
Fish & Shellfish Immunology | 2017
Zeli Tang; Hengchang Sun; Tingjin Chen; Zhipeng Lin; Hongye Jiang; Xinyi Zhou; Cun-Bin Shi; Houjun Pan; Ouqin Chang; Pengli Ren; Jinyun Yu; Xuerong Li; Jin Xu; Yan Huang; Xinbing Yu
ABSTRACT Clonorchis sinensis (C. sinensis) is a fish‐borne trematode. Human can be infected by ingestion of C. sinensis metacercariae parasitized in grass carp (Ctenopharyngodon idella). For induction of effective oral immune responses, spores of Bacillus subtilis (B. subtilis) WB600 were utilized as vehicle to delivery CsCP (cysteine protease of C. sinensis) cooperated with CotC (B.s‐CotC‐CP), one of coat proteins, to the gastrointestinal tract. After routine culture of 8–12 h in LB medium, B. subtilis containing CotC‐CsCP was transferred into the sporulation culture medium. SDS‐PAGE, western blotting and the growth curve indicated that the best sporulation time of recombinant WB600 was 24–30 h at 37 °C with continuous shaking (250 rpm). Grass carp were fed with three levels of B.s‐CotC‐CP (1 × 106, 1 × 107, and 1 × 108 CFU g−1) incorporated in the basal pellets diet. The commercial pellets or supplemented with spores just expressing CotC (1 × 107 CFU g−1) were served as control diet. Our results showed that grass carp orally immunized with the feed‐based B.s‐CotC‐CP developed a strong specific immune response with significantly (P < 0.05) higher levels of IgM in samples of serum, bile, mucus of surface and intestinal compared to the control groups. Abundant colonization spores expressing CsCP were found in hindgut that is conducive to absorption and presentation of antigen. Moreover, B. subtilis spores appeared to show no sign of toxicity or damage in grass carp. Our cercariae challenge experiments suggested that oral administration of spores expressing CsCP could develop an effective protection against C. sinensis in fish body. Therefore, this study demonstrated that the feed‐based recombinant spores could trigger high levels of mucosal and humoral immunity, and would be a promising candidate vaccine against C. sinensis metacercariae formation in freshwater fish. HIGHLIGHTSConstruction of Bacillus subtilis spore expressing CsCP with high positive rate.Screening of the optimum sporulation conditions to express CotC‐CsCP on spores.Recombinant spores can significantly enhance immune responses of grass carp.Recombinant spores can colonize with no CsCP degradation in hindgut of fish.Spores expressing CsCP developed an effective protection against C. sinensis in fish.
Parasites & Vectors | 2018
Hengchang Sun; Zhipeng Lin; Lu Zhao; Tingjin Chen; Mei Shang; Hongye Jiang; Zeli Tang; Xinyi Zhou; Mengchen Shi; Lina Zhou; Pengli Ren; Honglin Qu; Jinsi Lin; Xuerong Li; Jin Xu; Yan Huang; Xinbing Yu
BackgroundClonorchiasis caused by Clonorchis sinensis has become increasingly prevalent in recent years. Effective prevention strategies are urgently needed to control this food-borne infectious disease. Previous studies indicated that paramyosin of C. sinensis (CsPmy) is a potential vaccine candidate.MethodsWe constructed a recombinant plasmid of PEB03-CotC-CsPmy, transformed it into Bacillus subtilis WB600 strain (B.s-CotC-CsPmy), and confirmed CsPmy expression on the spore surface by SDS-PAGE, Western blotting and immunofluorescence assay. The immune response and protective efficacy of the recombinant spore were investigated in BALB/c mice after intragastrical or intraperitoneal immunization. Additionally, biochemical enzyme activities in sera, the intestinal histopathology and gut microflora of spore-treated mice were investigated.ResultsCsPmy was successfully expressed on the spore surface and the fusion protein on the spore surface with thermostability. Specific IgG in sera and intestinal mucus were increased after intraperitoneal and intragastrical immunization. The sIgA level in intestinal mucus, feces and bile of B.s-CotC-CsPmy orally treated mice were also significantly raised. Furthermore, numerous IgA-secreting cells were detected in intestinal mucosa of intragastrically immunized mice. No inflammatory injury was observed in the intestinal tissues and there was no significant difference in levels of enzyme-indicated liver function among the groups. Additionally, the diversity and abundance of gut microbiota were not changed after oral immunization. Intragastric and intraperitoneal immunization of B.s-CotC-CsPmy spores in mice resulted in egg reduction rates of 48.3 and 51.2% after challenge infection, respectively. Liver fibrosis degree in B.s-CotC-CsPmy spores treated groups was also significantly reduced.ConclusionsCsPmy expressed on the spore surface maintained its immunogenicity. Both intragastrical and intraperitoneal immunization with B.s-CotC-CsPmy spores induced systemic and local mucosal immune response in mice. Although both intragastric and intraperitoneal immunization elicited a similar protective effect, intragastric immunization induced stronger mucosal immune response without side effects to the liver, intestine and gut microbiota, compared with intraperitoneal immunization. Oral immunization with B. subtilis spore expressing CsPmy on the surface was a promising, safe and needle-free vaccination strategy against clonorchiasis.