Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tinglu Guan is active.

Publication


Featured researches published by Tinglu Guan.


Cell | 1997

A Small Ubiquitin-Related Polypeptide Involved in Targeting RanGAP1 to Nuclear Pore Complex Protein RanBP2

Rohit Mahajan; Christian Delphin; Tinglu Guan; Larry Gerace; Frauke Melchior

We have found that the mammalian Ran GTPase-activating protein RanGAP1 is highly concentrated at the cytoplasmic periphery of the nuclear pore complex (NPC), where it associates with the 358-kDa Ran-GTP-binding protein RanBP2. This interaction requires the ATP-dependent posttranslational conjugation of RanGAP1 with SUMO-1 (for small ubiquitin-related modifier), a novel protein of 101 amino acids that contains low but significant homology to ubiquitin. SUMO-1 appears to represent the prototype for a novel family of ubiquitin-related protein modifiers. Inhibition of nuclear protein import resulting from antibodies directed at NPC-associated RanGAP1 cannot be overcome by soluble cytosolic RanGAP1, indicating that GTP hydrolysis by Ran at RanBP2 is required for nuclear protein import.


Journal of Biological Chemistry | 2000

Nuclear Import of Adenovirus DNA in Vitro Involves the Nuclear Protein Import Pathway and hsc70

Andrew C. S. Saphire; Tinglu Guan; Eric C. Schirmer; Glen R. Nemerow; Larry Gerace

Adenovirus, a respiratory virus with a double-stranded DNA genome, replicates in the nuclei of mammalian cells. We have developed a cytosol-dependent in vitro assay utilizing adenovirus nucleocapsids to examine the requirements for adenovirus docking to the nuclear pore complex and for DNA import into the nucleus. Our assay reveals that adenovirus DNA import is blocked by a competitive excess of classical protein nuclear localization sequences and other inhibitors of nuclear protein import and indicates that this process is dependent on hsc70. Previous work revealed that the hexon (coat) protein of adenovirus is the only major protein on the surface of the adenovirus nucleocapsid that docks at the nuclear pore complex. This, together with our finding that in vitro nuclear import of hexon is inhibited by an excess of classical nuclear localization sequences, suggests a role for the hexon protein in adenovirus DNA import. However, recombinant transport factors that are sufficient for hexon import in permeabilized cells do not support DNA import, indicating that there are other as yet unidentified factors required for this process.


Journal of Cell Biology | 2002

Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export.

Phyllis D. Frosst; Tinglu Guan; Cecilia Subauste; Klaus M. Hahn; Larry Gerace

Tpr is a coiled-coil protein found near the nucleoplasmic side of the pore complex. Since neither the precise localization of Tpr nor its functions are well defined, we generated antibodies to three regions of Tpr to clarify these issues. Using light and EM immunolocalization, we determined that mammalian Tpr is concentrated within the nuclear basket of the pore complex in a distribution similar to Nup153 and Nup98. Antibody localization together with imaging of GFP-Tpr in living cells revealed that Tpr is in discrete foci inside the nucleus similar to several other nucleoporins but is not present in intranuclear filamentous networks (Zimowska et al., 1997) or in long filaments extending from the pore complex (Cordes et al., 1997) as proposed. Injection of anti-Tpr antibodies into mitotic cells resulted in depletion of Tpr from the nuclear envelope without loss of other pore complex basket proteins. Whereas nuclear import mediated by a basic amino acid signal was unaffected, nuclear export mediated by a leucine-rich signal was retarded significantly. Nuclear injection of anti-Tpr antibodies in interphase cells similarly yielded inhibition of protein export but not import. These results indicate that Tpr is a nucleoporin of the nuclear basket with a role in nuclear protein export.


Molecular and Cellular Biology | 2000

Nup50, a Nucleoplasmically Oriented Nucleoporin with a Role in Nuclear Protein Export

Tinglu Guan; Ralph H. Kehlenbach; Eric C. Schirmer; Angelika Kehlenbach; Fan Fan; Bruce E. Clurman; Norman Arnheim; Larry Gerace

ABSTRACT We present here a detailed analysis of a rat polypeptide termed Nup50 (formerly NPAP60) that was previously found to be associated with the nuclear pore complex (F. Fan et al., Genomics 40:444–453, 1997). We have found that Nup50 (and/or a related 70-kDa polypeptide) is present in numerous rat cells and tissues. By immunofluorescence microscopy, Nup50 was found to be highly concentrated at the nuclear envelope of rat liver nuclei, whereas in cultured NRK cells it also is abundant in intranuclear regions. On the basis of immunogold electron microscopy of both rat liver nuclear envelopes and NRK cells, we determined that Nup50 is specifically localized in the nucleoplasmic fibrils of the pore complex. Microinjection of anti-Nup50 antibodies into the nucleus of NRK cells resulted in strong inhibition of nuclear export of a protein containing a leucine-rich nuclear export sequence, whereas nuclear import of a protein containing a classical nuclear localization sequence was unaffected. Correspondingly, CRM1, the export receptor for leucine-rich export sequences, directly bound to a fragment of Nup50 in vitro, whereas several other import and export receptors did not significantly interact with this fragment. Taken together, our data indicate that Nup50 has a direct role in nuclear protein export and probably serves as a binding site on the nuclear side of the pore complex for export receptor-cargo complexes.


The EMBO Journal | 2003

Switch from capsid protein import to adenovirus assembly by cleavage of nuclear transport signals

Harald Wodrich; Tinglu Guan; Gino Cingolani; Dan J. Von Seggern; Glen R. Nemerow; Larry Gerace

Replication and assembly of adenovirus occurs in the nucleus of infected cells, requiring the nuclear import of all viral structural proteins. In this report we show that nuclear import of the major capsid protein, hexon, is mediated by protein VI, a structural protein located underneath the 12 vertices of the adenoviral capsid. Our data indicate that protein VI shuttles between the nucleus and the cytoplasm and that it links hexon to the nuclear import machinery via an importin α/β‐dependent mechanism. Key nuclear import and export signals of protein VI are located in a short C‐terminal segment, which is proteolytically removed during virus maturation. The removal of these C‐terminal transport signals appears to trigger a functional transition in protein VI, from a role in supporting hexon nuclear import to a structural role in virus assembly.


Journal of Cell Biology | 2002

Influence of cargo size on Ran and energy requirements for nuclear protein import

Susan K. Lyman; Tinglu Guan; Janna Bednenko; Harald Wodrich; Larry Gerace

Previous work has shown that the transport of some small protein cargoes through the nuclear pore complex (NPC) can occur in vitro in the absence of nucleoside triphosphate hydrolysis. We now demonstrate that in the importin α/β and transportin import pathways, efficient in vitro transport of large proteins, in contrast to smaller proteins, requires hydrolyzable GTP and the small GTPase Ran. Morphological and biochemical analysis indicates that the presence of Ran and GTP allows large cargo to efficiently cross central regions of the NPC. We further demonstrate that this function of RanGTP at least partly involves its direct binding to importin β and transportin. We suggest that RanGTP functions in these pathways to promote the transport of large cargo by enhancing the ability of import complexes to traverse diffusionally restricted areas of the NPC.


Journal of Virology | 2000

Regulation of Adenovirus Membrane Penetration by the Cytoplasmic Tail of Integrin β5

Kena Wang; Tinglu Guan; David A. Cheresh; Glen R. Nemerow

ABSTRACT Adenovirus (Ad) cell entry involves sequential interactions with host cell receptors that mediate attachment (CAR), internalization (αvβ3 and αvβ5), and penetration (αvβ5) of the endosomal membrane. These events allow the virus to deliver its genome to the nucleus. While integrins αvβ3 and αvβ5 both promote Ad internalization into cells, integrin αvβ5 selectively facilitates Ad-mediated membrane permeabilization and endosome rupture. In the experiments reported herein, we demonstrate that the intracellular domain of the integrin β5 subunit specifically regulates Ad-mediated membrane permeabilization and gene delivery. CS-1 melanoma cells expressing a truncated integrin β5 or a chimeric (β5-β3) cytoplasmic tail (CT) supported normal levels of Ad endocytosis but had reduced Ad-mediated gene delivery and membrane permeabilization relative to cells expressing a wild-type integrin β5. Thin-section electron microscopy revealed that virion particles were capable of being endocytosed into cells expressing a truncated β5CT, but they failed to escape cytoplasmic vesicles and translocate to the nucleus. Site-specific mutagenesis studies suggest that a C-terminal TVD motif in the β5CT plays a major role in Ad membrane penetration.


Molecular and Cellular Biology | 2009

Overlapping Functions of Nuclear Envelope Proteins NET25 (Lem2) and Emerin in Regulation of Extracellular Signal-Regulated Kinase Signaling in Myoblast Differentiation

Michael Huber; Tinglu Guan; Larry Gerace

ABSTRACT Mutations in certain nuclear envelope (NE) proteins cause muscular dystrophies and other disorders, but the disease mechanisms remain unclear. The nuclear envelope transmembrane protein NET25 (Lem2) is a truncated paralog of MAN1, an NE component linked to bone disorders. NET25 and MAN1 share an ∼40-residue LEM homology domain with emerin, the protein mutated in X-linked Emery-Dreifuss muscular dystrophy. However, roles for NET25 and MAN1 in myogenesis have not yet been described. Using RNA interference in C2C12 myoblasts, we show for the first time that both NET25 and MAN1 are required for myogenic differentiation. NET25 depletion causes hyperactivation of extracellular signal-regulated kinase 1/2 at the onset of differentiation, and pharmacological inhibition of this transient overactivation rescues myogenesis. In contrast, pharmacological inhibition of both mitogen-activated protein kinase and transforming growth factor β signaling is required to rescue differentiation after MAN1 depletion. Ectopic expression of silencing-resistant NET25 rescues myogenesis after depletion of emerin but not after MAN1 silencing. Thus, NET25 and emerin have at least partially overlapping functions during myogenic differentiation, which are distinct from those of MAN1. Our work supports the hypothesis that deregulation of cell signaling contributes to NE-linked disorders and suggests that mutations in NET25 and MAN1 may cause muscle diseases.


BMC Cell Biology | 2006

Nuclear envelope transmembrane proteins (NETs) that are up-regulated during myogenesis

I-Hsiung Brandon Chen; Michael Huber; Tinglu Guan; Anja Bubeck; Larry Gerace

BackgroundThe nuclear lamina is a protein meshwork lining the inner nuclear membrane, which contains a polymer of nuclear lamins associated with transmembrane proteins of the inner nuclear membrane. The lamina is involved in nuclear structure, gene expression, and association of the cytoplasmic cytoskeleton with the nucleus. We previously identified a group of 67 novel putative nuclear envelope transmembrane proteins (NETs) in a large-scale proteomics analysis. Because mutations in lamina proteins have been linked to several human diseases affecting skeletal muscle, we examined NET expression during differentiation of C2C12 myoblasts. Our goal was to identify new nuclear envelope and lamina components whose expression is coordinated with muscle differentiation.ResultsUsing transcriptional microarray analysis, we found that expression of 6 of the NETs significantly increases during myoblast differentiation. We confirmed these results using quantitative RT-PCR, and furthermore, found that all 6 NETs are expressed at high levels in adult mouse skeletal muscle relative to 9 other tissues examined. Using epitope-tagged cDNAs, we determined that the 5 NETs we could analyze (NETs 9, 25, 32, 37 and 39) all target to the nuclear envelope in C2C12 cells. Furthermore, the 3 NETs that we could analyze by immunoblotting were highly enriched in nuclear envelopes relative to microsomal membranes purified from mouse liver. Database searches showed that 4 of the 6 up-regulated NETs contain regions of homology to proteins previously linked to signaling.ConclusionThis work identified 6 NETs that are predicted to have important functions in muscle development and/or maintenance from their expression patterns during myoblast differentiation and in mouse tissues. We confirmed that 5 of these NETs are authentic nuclear envelope proteins. Four members of this group have potential signaling functions at the NE, based on their sequence homologies.


Journal of Virology | 2006

Adenovirus Core Protein pVII Is Translocated into the Nucleus by Multiple Import Receptor Pathways

Harald Wodrich; Aurelia Cassany; Maximiliano A. D'Angelo; Tinglu Guan; Glen R. Nemerow; Larry Gerace

ABSTRACT Adenoviruses are nonenveloped viruses with an ∼36-kb double-stranded DNA genome that replicate in the nucleus. Protein VII, an abundant structural component of the adenovirus core that is strongly associated with adenovirus DNA, is imported into the nucleus contemporaneously with the adenovirus genome shortly after virus infection and may promote DNA import. In this study, we evaluated whether protein VII uses specific receptor-mediated mechanisms for import into the nucleus. We found that it contains potent nuclear localization signal (NLS) activity by transfection of cultured cells with protein VII fusion constructs and by microinjection of cells with recombinant protein VII fusions. We identified three NLS-containing regions in protein VII by deletion mapping and determined important NLS residues by site-specific mutagenesis. We found that recombinant protein VII and its NLS-containing domains strongly and specifically bind to importin α, importin β, importin 7, and transportin, which are among the most abundant cellular nuclear import receptors. Moreover, these receptors can mediate the nuclear import of protein VII fusions in vitro in permeabilized cells. Considered together, these data support the hypothesis that protein VII is a major NLS-containing adaptor for receptor-mediated import of adenovirus DNA and that multiple import pathways are utilized to promote efficient nuclear entry of the viral genome.

Collaboration


Dive into the Tinglu Guan's collaboration.

Top Co-Authors

Avatar

Larry Gerace

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Glen R. Nemerow

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Yates

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B M Paschal

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge