Tiziana Del Giacco
University of Perugia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tiziana Del Giacco.
Tetrahedron Letters | 1989
Enrico Baciocchi; Tiziana Del Giacco; Cesare Rol; Giovanni V. Sebastiani
Abstract Benzyltrimethylsilanes react with cerium(IV) ammonium nitrate in AcOH to give products of C-Si cleavage (benzyl nitrate and acetate), under very mild conditions and in quantitative yields. The reaction rate is very sensitive to the nature of the ring substituents (???= −5.4), which clearly suggests the operation of one electron transfer mechanism. x
Journal of Organic Chemistry | 2008
Enrico Baciocchi; Tiziana Del Giacco; Osvaldo Lanzalunga; Paolo Mencarelli; Barbara Procacci
The 3-cyano-N-methylquinolinium perchlorate (3-CN-NMQ(+)ClO4(-))-photosensitized oxidation of phenyl alkyl sulfoxides (PhSOCR1R2R3, 1, R1 = R2 = H, R3 = Ph; 2, R1 = H, R2 = Me, R3 = Ph; 3, R1 = R2 = Ph, R3 = H; 4, R1 = R2 = Me, R3 = Ph; 5, R1 = R2 = R3 = Me) has been investigated by steady-state irradiation and nanosecond laser flash photolysis (LFP) under nitrogen in MeCN. Steady-state photolysis showed the formation of products deriving from the heterolytic C-S bond cleavage in the sulfoxide radical cations (alcohols, R1R2R3COH, and acetamides, R1R2R3CNHCOCH3) accompanied by sulfur-containing products (phenyl benzenethiosulfinate, diphenyl disulfide, and phenyl benzenethiosulfonate). By laser irradiation, the formation of 3-CN-NMQ(*) (lambda(max) = 390 nm) and sulfoxide radical cations 1(*+) , 2(*+), and 5(*+) (lambda(max) = 550 nm) was observed within the laser pulse. The radical cations decayed by first-order kinetics with a process attributable to the heterolytic C-S bond cleavage leading to the sulfinyl radical and an alkyl carbocation. The radical cations 3(*+) and 4(*+) fragment too rapidly, decaying within the laser pulse. The absorption band of the cation Ph2CH(+) (lambda(max) = 440 nm) was observed with 3 while the absorption bands of 3-CN-NMQ(*) and PhSO(*) (lambda(max) = 460 nm) were observed just after the laser pulse in the LFP experiment with 4. No competitive beta-C-H bond cleavage has been observed in the radical cations from 1-3. The C-S bond cleavage rates were measured for 1(*+), 2(*+), and 5(*+). For 3(*+) and 4(*+), only a lower limit (ca. >3 x 10(7) s(-1)) could be given. Quantum yields (Phi) and fragmentation first-order rate constants (k) appear to depend on the structure of the alkyl group and on the bond dissociation free energy (BDFE) of the C-S bond of the radical cations determined by a thermochemical cycle using the C-S BDEs for the neutral sulfoxides 1-5 obtained by DFT calculations. Namely, Phi and k increase as the C-S BDFE becomes more negative, that is in the order 1 < 5 < 2 < 3, 4, which is also the stability order of the alkyl carbocations formed in the cleavage. An estimate of the difference in the C-S bond cleavage rate between sulfoxide and sulfide radical cations was possible by comparing the fragmentation rate of 5(*+) (1.4 x 10(6) s(-1)) with the upper limit (10(4) s(-1)) given for tert-butyl phenyl sulfide radical cation (Baciocchi, E.; Del Giacco, T.; Gerini, M. F.; Lanzalunga, O. Org. Lett. 2006, 8, 641-644). It turns out that sulfoxide radical cations undergo C-S bond breaking at a rate at least 2 orders of magnitude faster than that of corresponding sulfide radical cations.
Journal of Organic Chemistry | 2011
Enrico Baciocchi; Marta Bettoni; Tiziana Del Giacco; Osvaldo Lanzalunga; Marco Mazzonna; Paolo Mencarelli
Steady state and laser flash photolysis (LFP) of a series of p-X-cumyl phenyl sulfides (4-X-C(6)H(4)C(CH(3))(2)SC(6)H(5): 1, X = Br; 2, X = H; 3, X = CH(3); 4, X = OCH(3)) and p-X-cumyl p-methoxyphenyl sulfides (4-X-C(6)H(4)C(CH(3))(2)SC(6)H(4)OCH(3): 5, X = H; 6, X = CH(3); 7, X = OCH(3)) has been carried out in the presence of N-methoxy phenanthridinium hexafluorophosphate (MeOP(+)PF(6)(-)) under nitrogen in MeCN. Steady state photolysis showed the formation of products deriving from the C-S bond cleavage in the radical cations 1(+•)-7(+•) (2-aryl-2-propanols and diaryl disulfides). Formation of 1(+•)-7(+•) was also demonstrated by LFP experiments evidencing the absorption bands of the radical cations 1(+•)-3(+•) (λ(max) = 530 nm) and 5(+•)-7(+•) (λ(max) = 570 nm) mainly localized in the arylsulfenyl group and radical cation 4(+•) (λ(max) = 410, 700 nm) probably mainly localized in the cumyl ring. The radical cations decayed by first-order kinetics with a process attributable to the C-S bond cleavage. On the basis of DFT calculations it has been suggested that the conformations most suitable for C-S bond cleavage in 1(+•)-4(+•) and 7(+•) are characterized by having the C-S bond almost collinear with the π system of the cumyl ring and by a significant charge and spin delocalization from the ArS ring to the cumyl ring. Such a delocalization is probably at the origin of the observation that the rates of C-S bond cleavage result in very little sensitivity to changes in the C-S bond dissociation free energy (BDFE). A quite large reorganization energy value (λ = 43.7 kcal mol(-1)) has been calculated for the C-S bond scission reaction in the radical cation. This value is much larger than that (λ = 12 kcal mol(-1)) found for the C-C bond cleavage in bicumyl radical cations, a reaction that also leads to cumyl carbocations.
Journal of Physical Organic Chemistry | 2000
Tiziana Del Giacco; Michele Ranchella; Cesare Rol; Giovanni V. Sebastiani
The quantum yields (ϕobs) relating to the colloidal TiO2-sensitized photo-oxidation of ring methoxy-substituted benzylic alcohols (D) were determined. The true quantum yields (ϕ0) were obtained from a Langmuir–Hinshelwood isotherm treatment of ϕobs at different [D]. In the light of the suggested photo-oxidation mechanism, an equation was deduced where ϕ0 is expressed as a function of the electron transfer (ket), back electron transfer (k−et) and benzylic deprotonation (kp) rate constants. In particular, the lower ϕ0 value of 3-CH3O-vs 4-CH3O-benzyl alcohol (1, with lower Ep) should principally depend on the difference in ket, while the decrease in ϕ0 on going from alcohol 1 to the α-methyl derivative (4) should be due to the difference in kp (stereoelectronic effect). The adsorption equilibrium constants under irradiation (KD) were also obtained from the above equation and the values are similar for the considered substrates, except for 4. In fact, this substrate shows a lower KD value, probably because of the steric hindrance of the methyl group to the OH adsorption (preferential site) on TiO2. Finally, both the inter- and intramolecular deuterium isotope effect (kH/kD = 1.8 and 1.6, respectively) are consistent with a kinetically significant Cα—H bond breaking following the electron-transfer step. Copyright
Journal of Organic Chemistry | 2012
Tiziana Del Giacco; Osvaldo Lanzalunga; Marco Mazzonna; Paolo Mencarelli
Steady-state and laser flash photolysis (LFP) studies of a series of aryl triphenylmethyl sulfides [1, 3,4-(CH(3)O)(2)-C(6)H(3)SC(C(6)H(5))(3); 2, 4-CH(3)O-C(6)H(4)SC(C(6)H(5))(3); 3, 4-CH(3)-C(6)H(4)SC(C(6)H(5))(3); 4, C(6)H(5)SC(C(6)H(5))(3); and 5, 4-Br-C(6)H(4)SC(C(6)H(5))(3)] has been carried out in the presence of N-methoxyphenanthridinium hexafluorophosphate in CH(3)CN, CH(2)Cl(2), CH(2)Cl(2)/CH(3)CN, and CH(2)Cl(2)/CH(3)OH mixtures. Products deriving from the C-S bond cleavage in the radical cations 1(•+)-5(•+) have been observed in the steady-state photolysis experiments. Time-resolved LFP showed first-order decay of the radical cations accompanied by formation of the triphenylmethyl cation. A significant decrease of the C-S bond cleavage rate constants was observed by increasing the electron-donating power of the arylsulfenyl substituent, that is, by increasing the stability of the radical cations. DFT calculations showed that, in 2(•+) and 3(•+), charge and spin densities are mainly localized in the ArS group. In the TS of the C-S bond cleavage an increase of the positive charge in the trityl moiety and of the spin density on the ArS group is observed. The higher delocalization of the charge in the TS as compared to the initial state is probably at the origin of the observation that the C-S bond cleavage rates decrease by increasing the polarity of the solvent.
Photochemical and Photobiological Sciences | 2003
Tiziana Del Giacco; Loredana Latterini; Fausto Elisei
The photophysical and photochemical properties of 1,2,4-trihydroxy-9,10-anthraquinone (purpurin) adsorbed on three inorganic oxides (SiO2, Al2O3 and TiO2) were compared with those shown by the same molecule in solution and in solid phase. In particular, steady-state (absorption and fluorescence) and transient (laser flash photolysis) techniques were used to characterize the lowest excited singlet and triplet states together with the transients (ketyl radicals and cation radicals) formed through the primary decay processes of the excited states of purpurin both in solution and adsorbed on the oxide surfaces, TiO2 is particularly efficient to sensitize the oxidation of purpurin and to form colourless photoproducts, while purpurin absorbed on SiO2 and Al2O3 is much more stable. This is related to the ability of the solid matrix to induce the formation of the purpurin cation radical and to direct its decay towards reactive channels.
Physical Chemistry Chemical Physics | 2000
Tiziana Del Giacco; Fausto Elisei; Osvaldo Lanzalunga
The photochemical behavior of three aryl alkyl sulfides, thioanisole (TA), benzyl phenyl sulfide (BPS) and 4-methoxybenzyl phenyl sulfide (MBPS), sensitized by triplet chloranil (CA), was investigated by nanosecond laser flash photolysis and steady-state irradiation in CH2Cl2 and MeCN. The nature of the transients detected upon 355-nm laser excitation was independent of the molecular structure of the aryl alkyl sulfides but strongly affected by the solvent polarity. In particular, in CH2Cl2 the quenching process of triplet CA by aryl alkyl sulfides was accompanied by H-transfer, with formation of the CAH• and TA(-H)•/BPS(-H)•/MBPS(-H)• radicals. In contrast, a charge transfer process between triplet CA and aryl alkyl sulfides, with formation of the radical anion CA•− and radical cations of aryl alkyl sulfides, occurred in MeCN. In this solvent, a transient detected at long delay time was tentatively assigned to the anion CAH− formed by H-transfer between radical ions. In all experiments, transient species were characterized in terms of second-order decay rate constants and quantum yields of formation. Steady-state irradiation of the CA/TA system led to the stable photoadduct C6H5SCH2OC6Cl4OH in both CH2Cl2 and MeCN with quantum yields of 0.033 and 0.27, respectively. In contrast, aldehydes, thioacetals, and disulfides were the main products obtained upon irradiation of the CA/BPS and CA/MBPS systems. The photoaddition products were not observed, probably owing to their low stability. The nature of the photoproducts formed by irradiation of CA/aryl alkyl sulfides was independent of solvent properties, even though the reactivity was higher in MeCN than in CH2Cl2 .
Journal of Organic Chemistry | 2013
Tullio Cavattoni; Tiziana Del Giacco; Osvaldo Lanzalunga; Marco Mazzonna; Paolo Mencarelli
The oxidation of a series of aryl tert-butyl sulfoxides (4-X-C6H4SOC(CH3)3: 1, X = OCH3; 2, X = CH3; 3, X = H; 4, X = Br) photosensitized by 3-cyano-N-methylquinolinium perchlorate (3-CN-NMQ(+)) has been investigated by steady-state irradiation and nanosecond laser flash photolysis (LFP) under nitrogen in MeCN. Products deriving from the C-S bond cleavage in the radical cations 1(+•)-4(+•) have been observed in the steady-state photolysis experiments. By laser irradiation, the formation of 3-CN-NMQ(•) (λ(max) = 390 nm) and 1(+•)-4(+•) (λ(max) = 500-620 nm) was observed. A first-order decay of the sulfoxide radical cations, attributable to C-S bond cleavage, was observed with fragmentation rate constants (k(f)) that decrease by increasing the electron donating power of the arylsulfinyl substituent from 1.8 × 10(6) s(-1) (4(+•)) to 2.3 × 10(5) s(-1) (1(+•)). DFT calculations showed that a significant fraction of the charge is delocalized in the tert-butyl group of the radical cations, thus explaining the small substituent effect on the C-S bond cleavage rate constants. Via application of the Marcus equation to the kinetic data, a very large value for the reorganization energy (λ = 62 kcal mol(-1)) has been calculated for the C-S bond scission reaction in 1(+•)-4(+•).
Journal of Chemical Research-s | 2003
Marta Bettoni; Tiziana Del Giacco; Cesare Rol; Giovanni V. Sebastiani
The “dark” adsorption equilibrium constants of different series of benzylic derivatives on TiO2 suspended in CH3CN were determined through a Langmuir-type adsorption isotherm. In particular, the similarity of the K values of differently ring substituted α-OH derivatives within the same series confirms the previously suggested preferential adsorption of the hydroxyl group (at the oxygen atom) with respect to the aromatic moiety.
Chemistry: A European Journal | 2001
Tiziana Del Giacco; Enrico Baciocchi; Osvaldo Lanzalunga; Fausto Elisei
The reactivity of the cation radical of (4-MeOC6H4)2CH2 photosensitized by 1,4-benzoquinone (BQ), 2,5-dichloro-1,4-benzoquinone (Cl2BQ), and tetrachloro-1,4-benzoquinone (chloranil, CA) was investigated in acetonitrile. The main photoreaction products obtained by steady-state irradiation were identified to be: (4-MeOC6H4)2-CHOC6H4OH, sensitized by BQ; (4-MeOC6H4)2CHCl, sensitized by Cl2BQ; (4-MeOC6H4)2CHOH, sensitized by CA. The mechanism of their formation was investigated by nanosecond laser flash photolysis that allowed transient species (radical ions, neutral radicals, and ions) to be detected and characterized in terms of absorption spectra, formation quantum yields, and decay rate constants. For all systems, the interaction between the triplet quinone (Q) and (4-MeOC6H4)2CH2 produced the corresponding radical ions (quantum yield phi > or = 0.72) which mainly decay by back electron transfer processes. Less efficient reaction routes for the radical ions Q*- and (4-MeOC6H4)2CH2*+ were also: i) the proton-transfer process with the formation of the radical (4-MeOC6H4)2CH* by use of Cl2BQ; ii) the hydrogen-transfer process with the formation of the cation (4-MeOC6H4)2CH+ in the case of CA. Instead. BQ sensitized a much higher yield of BOH* and (4-MeOC6H4)2CH*, mainly by the direct interaction of triplet BQ with (4-MeOC6H4)2CH2. It was also shown that the presence of salts decreases significantly the rate of the back electron transfer process and enhances the quantum yields of formation of the neutral radicals and ions when Cl2BQ and CA are used, respectively. The behavior of BQ*-, Cl2BQ*-, and CA*- appears to be mainly determined by the Mulliken charges on the oxygen atom obtained from quantum mechanical calculations with the model B3LYP/6-311G(d,p). Spin densities seem to be much less important.