Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tjelvar S. G. Olsson is active.

Publication


Featured researches published by Tjelvar S. G. Olsson.


Journal of Molecular Biology | 2008

The Thermodynamics of Protein-Ligand Interaction and Solvation : Insights for Ligand Design

Tjelvar S. G. Olsson; Mark A. Williams; William R. Pitt; John E. Ladbury

Isothermal titration calorimetry is able to provide accurate information on the thermodynamic contributions of enthalpy and entropy changes to free energies of binding. The Structure/Calorimetry of Reported Protein Interactions Online database of published isothermal titration calorimetry studies and structural information on the interactions between proteins and small-molecule ligands is used here to reveal general thermodynamic properties of protein-ligand interactions and to investigate correlations with changes in solvation. The overwhelming majority of interactions are found to be enthalpically favoured. Synthetic inhibitors and biological ligands form two distinct subpopulations in the data, with the former having greater average affinity due to more favourable entropy changes on binding. The greatest correlation is found between the binding free energy and apolar surface burial upon complex formation. However, the free-energy contribution per unit area buried is only 30-50% of that expected from earlier studies of transfer free energies of small molecules. A simple probability-based estimator for the maximal affinity of a binding site in terms of its apolar surface area is proposed. Polar surface area burial also contributes substantially to affinity but is difficult to express in terms of unit area due to the small variation in the amount of polar surface buried and a tendency for cancellation of its enthalpic and entropic contributions. Conventionally, the contribution of apolar desolvation to affinity is attributed to gain of entropy due to solvent release. Although data presented here are supportive of this notion, because the correlation of entropy change with apolar surface burial is relatively weak, it cannot, on present evidence, be confidently considered to be correct. Further, thermodynamic changes arising from small differences between ligands binding to individual proteins are relatively large and, in general, uncorrelated with changes in solvation, suggesting that trends identified across widely differing proteins are of limited use in explaining or predicting the effects of ligand modifications.


Biochemical Journal | 2005

H-NS is a part of a thermally controlled mechanism for bacterial gene regulation

Shusuke Ono; Martin D. Goldberg; Tjelvar S. G. Olsson; Diego Esposito; Jay C. D. Hinton; John E. Ladbury

Temperature is a primary environmental stress to which micro-organisms must be able to adapt and respond rapidly. Whereas some bacteria are restricted to specific niches and have limited abilities to survive changes in their environment, others, such as members of the Enterobacteriaceae, can withstand wide fluctuations in temperature. In addition to regulating cellular physiology, pathogenic bacteria use temperature as a cue for activating virulence gene expression. This work confirms that the nucleoid-associated protein H-NS (histone-like nucleoid structuring protein) is an essential component in thermoregulation of Salmonella. On increasing the temperature from 25 to 37 degrees C, more than 200 genes from Salmonella enterica serovar Typhimurium showed H-NS-dependent up-regulation. The thermal activation of gene expression is extremely rapid and change in temperature affects the DNA-binding properties of H-NS. The reduction in gene repression brought about by the increase in temperature is concomitant with a conformational change in the protein, resulting in the decrease in size of high-order oligomers and the appearance of increasing concentrations of discrete dimers of H-NS. The present study addresses one of the key complex mechanisms by which H-NS regulates gene expression.


Protein Science | 2011

Extent of enthalpy-entropy compensation in protein-ligand interactions.

Tjelvar S. G. Olsson; John E. Ladbury; Will R. Pitt; Mark A. Williams

The extent of enthalpy–entropy compensation in protein–ligand interactions has long been disputed because negatively correlated enthalpy (ΔH) and entropy (TΔS) changes can arise from constraints imposed by experimental and analytical procedures as well as through a physical compensation mechanism. To distinguish these possibilities, we have created quantitative models of the effects of experimental constraints on isothermal titration calorimetry (ITC) measurements. These constraints are found to obscure any compensation that may be present in common data representations and regression analyses (e.g., in ΔH vs. –TΔS plots). However, transforming the thermodynamic data into ΔΔ‐plots of the differences between all pairs of ligands that bind each protein diminishes the influence of experimental constraints and representational bias. Statistical analysis of data from 32 diverse proteins shows a significant and widespread tendency to compensation. ΔΔH versus ΔΔG plots reveal a wide variation in the extent of compensation for different ligand modifications. While strong compensation (ΔΔH and −TΔΔS opposed and differing by < 20% in magnitude) is observed for 22% of modifications (twice that expected without compensation), 15% of modifications result in reinforcement (ΔΔH and −TΔΔS of the same sign). Because both enthalpy and entropy changes arise from changes to the distribution of energy states on binding, there is a general theoretical expectation of compensated behavior. However, prior theoretical studies have focussed on explaining a stronger tendency to compensation than actually found here. These results, showing strong but imperfect compensation, will act as a benchmark for future theoretical models of the thermodynamic consequences of ligand modification.


Journal of Chemical Information and Modeling | 2012

Potential and Limitations of Ensemble Docking

Oliver Korb; Tjelvar S. G. Olsson; Simon J. Bowden; Richard J. Hall; Marcel L. Verdonk; John W. Liebeschuetz; Jason C. Cole

A major problem in structure-based virtual screening applications is the appropriate selection of a single or even multiple protein structures to be used in the virtual screening process. A priori it is unknown which protein structure(s) will perform best in a virtual screening experiment. We investigated the performance of ensemble docking, as a function of ensemble size, for eight targets of pharmaceutical interest. Starting from single protein structure docking results, for each ensemble size up to 500,000 combinations of protein structures were generated, and, for each ensemble, pose prediction and virtual screening results were derived. Comparison of single to multiple protein structure results suggests improvements when looking at the performance of the worst and the average over all single protein structures to the performance of the worst and average over all protein ensembles of size two or greater, respectively. We identified several key factors affecting ensemble docking performance, including the sampling accuracy of the docking algorithm, the choice of the scoring function, and the similarity of database ligands to the cocrystallized ligands of ligand-bound protein structures in an ensemble. Due to these factors, the prospective selection of optimum ensembles is a challenging task, shown by a reassessment of published ensemble selection protocols.


Journal of Computer-aided Molecular Design | 2012

The good, the bad and the twisted: a survey of ligand geometry in protein crystal structures

John W. Liebeschuetz; Jana Hennemann; Tjelvar S. G. Olsson; Colin R. Groom

The protein databank now contains the structures of over 11,000 ligands bound to proteins. These structures are invaluable in applied areas such as structure-based drug design, but are also the substrate for understanding the energetics of intermolecular interactions with proteins. Despite their obvious importance, the careful analysis of ligands bound to protein structures lags behind the analysis of the protein structures themselves. We present an analysis of the geometry of ligands bound to proteins and highlight the role of small molecule crystal structures in enabling molecular modellers to critically evaluate a ligand model’s quality and investigate protein-induced strain.


eLife | 2015

Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance

Scott Berry; Matthew Hartley; Tjelvar S. G. Olsson; Caroline Dean; Martin Howard

Inheritance of gene expression states is fundamental for cells to ‘remember’ past events, such as environmental or developmental cues. The conserved Polycomb Repressive Complex 2 (PRC2) maintains epigenetic repression of many genes in animals and plants and modifies chromatin at its targets. Histones modified by PRC2 can be inherited through cell division. However, it remains unclear whether this inheritance can direct long-term memory of individual gene expression states (cis memory) or instead if local chromatin states are dictated by the concentrations of diffusible factors (trans memory). By monitoring the expression of two copies of the Arabidopsis Polycomb target gene FLOWERING LOCUS C (FLC) in the same plants, we show that one copy can be repressed while the other is active. Furthermore, this ‘mixed’ expression state is inherited through many cell divisions as plants develop. These data demonstrate that epigenetic memory of FLC expression is stored not in trans but in cis. DOI: http://dx.doi.org/10.7554/eLife.07205.001


CrystEngComm | 2013

Evaluation of molecular crystal structures using Full Interaction Maps

Peter A. Wood; Tjelvar S. G. Olsson; Jason C. Cole; Simon J. Cottrell; Neil Feeder; Peter T. A. Galek; Colin R. Groom; Elna Pidcock

The specific crystalline form of a compound has a significant impact on its solid state properties. A key requirement for chemists developing crystalline materials is therefore to understand and evaluate the crystal form under investigation. We show here how the visualisation of molecular interaction maps within the context of a crystal structure can be used to evaluate the stability of polymorphic structures, assess multiple types of non-covalent interactions and provide a platform for crystal morphology analysis. Examples of three industrially-relevant compounds – sulfathiazole, anastrozole and cipamfylline – illustrate this well. A qualitative agreement with experimental stability data is observed for the five sulfathiazole crystal forms. The anastrozole crystal structure is demonstrated to optimise interactions to the strongest acceptor sites even though there are no conventional hydrogen-bond donors in the structure. Finally, the fastest growing plane of the needle-like morphology of cipamfylline is shown to have more H-bond donor and acceptor interactions per surface area than the slower growing planes.


Journal of Medicinal Chemistry | 2016

Identifying Interactions that Determine Fragment Binding at Protein Hotspots

Chris Radoux; Tjelvar S. G. Olsson; Will R. Pitt; Colin R. Groom; Tom L. Blundell

Locating a ligand-binding site is an important first step in structure-guided drug discovery, but current methods do little to suggest which interactions within a pocket are the most important for binding. Here we illustrate a method that samples atomic hotspots with simple molecular probes to produce fragment hotspot maps. These maps specifically highlight fragment-binding sites and their corresponding pharmacophores. For ligand-bound structures, they provide an intuitive visual guide within the binding site, directing medicinal chemists where to grow the molecule and alerting them to suboptimal interactions within the original hit. The fragment hotspot map calculation is validated using experimental binding positions of 21 fragments and subsequent lead molecules. The ligands are found in high scoring areas of the fragment hotspot maps, with fragment atoms having a median percentage rank of 97%. Protein kinase B and pantothenate synthetase are examined in detail. In each case, the fragment hotspot maps are able to rationalize a Free-Wilson analysis of SAR data from a fragment-based drug design project.


New Phytologist | 2017

A calmodulin‐like protein regulates plasmodesmal closure during bacterial immune responses

Bo Xu; Cécilia Cheval; Anuphon Laohavisit; Bradleigh Hocking; David Chiasson; Tjelvar S. G. Olsson; Ken Shirasu; Christine Faulkner; Matthew Gilliham

Summary Plants sense microbial signatures via activation of pattern recognition receptors (PPRs), which trigger a range of cellular defences. One response is the closure of plasmodesmata, which reduces symplastic connectivity and the capacity for direct molecular exchange between host cells. Plasmodesmal flux is regulated by a variety of environmental cues but the downstream signalling pathways are poorly defined, especially the way in which calcium regulates plasmodesmal closure. Here, we identify that closure of plasmodesmata in response to bacterial flagellin, but not fungal chitin, is mediated by a plasmodesmal‐localized Ca2+‐binding protein Calmodulin‐like 41 (CML41). CML41 is transcriptionally upregulated by flg22 and facilitates rapid callose deposition at plasmodesmata following flg22 treatment. CML41 acts independently of other defence responses triggered by flg22 perception and reduces bacterial infection. We propose that CML41 enables Ca2+‐signalling specificity during bacterial pathogen attack and is required for a complete defence response against Pseudomonas syringae.


Science | 2017

Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis

Hongchun Yang; Scott Berry; Tjelvar S. G. Olsson; Matthew Hartley; Martin Howard; Caroline Dean

A multifactorial strategy establishes and maintains repressive chromatin marks in plants in response to environmental signals. Managing gene silencing through replication Vernalization is the process in plants by which wintertime chill stimulates springtime flowering. Yang et al. and Jiang et al. show how chill is recorded in Arabidopsis epigenetically by methylation of histones. Specialized components of the Polycomb group of proteins remodel DNA to establish the methylation marks and are linked to DNA replication. Long-term stable epigenetic status follows rapid establishment of metastable epigenetic marks. This epigenetic strategy may be key to the developmental requirement of both secure and nimble fate decisions, allowing plant cells to change fates. Science, this issue p. 1142 and p. 1146 Gene silencing by Polycomb complexes is central to eukaryotic development. Cold-induced epigenetic repression of FLOWERING LOCUS C (FLC) in the plant Arabidopsis provides an opportunity to study initiation and maintenance of Polycomb silencing. Here, we show that a subset of Polycomb repressive complex 2 factors nucleate silencing in a small region within FLC, locally increasing H3K27me3 levels. This nucleation confers a silenced state that is metastably inherited, with memory held in the local chromatin. Metastable memory is then converted to stable epigenetic silencing through separate Polycomb factors, which spread across the locus after cold to enlarge the domain that contains H3K27me3. Polycomb silencing at FLC thus has mechanistically distinct phases, which involve specialization of distinct Polycomb components to deliver first metastable then long-term epigenetic silencing.

Collaboration


Dive into the Tjelvar S. G. Olsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oliver Korb

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge