Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tobias Schripp is active.

Publication


Featured researches published by Tobias Schripp.


Science of The Total Environment | 2008

Ultra-fine particles release from hardcopy devices: Sources, real-room measurements and efficiency of filter accessories

Michael Wensing; Tobias Schripp; Erik Uhde; Tunga Salthammer

The release of ultra-fine particles (UFP, d < 0.1 microm) from hardcopy devices such as laser printers into the indoor environment is currently a topic of high concern. The general emission behavior of a printer can be examined by conducting emission test chamber measurements with particle-counting devices. Chamber experiments with modified laser printers operated without toner or paper also revealed UFP emissions. On the basis of these results we reasonably doubt the opinion that UFPs primarily originate from the toner. Instead, the high-temperature fuser unit is assumed to be one source for ultra-fine particle emission. UFP release typically follows the flow path of the cooling air which may leave the printer casing at various points (e.g. the paper tray). This limits the usability of the commercial filter systems available because the released particles could leave the printer without passing through the filter. Chamber measurements with various filter systems retrofitted to a laser printer demonstrate different efficiencies of UFP reduction. Complementary experiments were carried out in an office room. Here the decay of the particle concentration after a print job was about ten times slower than in the test chamber. A toxicological assessment of the emitted particles requires that their chemical composition be known. Due to the low mass of the released UFPs chemical analysis needs a prior enrichment on a feasible media. Experiments using electrostatic precipitation showed a flame retardant (tri-xylyl phosphate) whose concentration on the media was dependent on the number of pages printed. Whether this compound was particle-bound could not be determined.


Environmental Health Perspectives | 2015

Transdermal uptake of diethyl phthalate and di(n-butyl) phthalate directly from air: Experimental verification

Charles J. Weschler; Gabriel Bekö; Holger M. Koch; Tunga Salthammer; Tobias Schripp; Jørn Toftum; Geo Clausen

Background Fundamental considerations indicate that, for certain phthalate esters, dermal absorption from air is an uptake pathway that is comparable to or greater than inhalation. Yet this pathway has not been experimentally evaluated and has been largely overlooked when assessing uptake of phthalate esters. Objectives This study investigated transdermal uptake, directly from air, of diethyl phthalate (DEP) and di(n-butyl) phthalate (DnBP) in humans. Methods In a series of experiments, six human participants were exposed for 6 hr in a chamber containing deliberately elevated air concentrations of DEP and DnBP. The participants either wore a hood and breathed air with phthalate concentrations substantially below those in the chamber or did not wear a hood and breathed chamber air. All urinations were collected from initiation of exposure until 54 hr later. Metabolites of DEP and DnBP were measured in these samples and extrapolated to parent phthalate intakes, corrected for background and hood air exposures. Results For DEP, the median dermal uptake directly from air was 4.0 μg/(μg/m3 in air) compared with an inhalation intake of 3.8 μg/(μg/m3 in air). For DnBP, the median dermal uptake from air was 3.1 μg/(μg/m3 in air) compared with an inhalation intake of 3.9 μg/(μg/m3 in air). Conclusions This study shows that dermal uptake directly from air can be a meaningful exposure pathway for DEP and DnBP. For other semivolatile organic compounds (SVOCs) whose molecular weight and lipid/air partition coefficient are in the appropriate range, direct absorption from air is also anticipated to be significant. Citation Weschler CJ, Bekö G, Koch HM, Salthammer T, Schripp T, Toftum J, Clausen G. 2015. Transdermal uptake of diethyl phthalate and di(n-butyl) phthalate directly from air: experimental verification. Environ Health Perspect 123:928–934; http://dx.doi.org/10.1289/ehp.1409151


Journal of Exposure Science and Environmental Epidemiology | 2016

Role of clothing in both accelerating and impeding dermal absorption of airborne SVOCs

Glenn Morrison; Charles J. Weschler; Gabriel Bekö; Holger M. Koch; Tunga Salthammer; Tobias Schripp; Jørn Toftum; Geo Clausen

To assess the influence of clothing on dermal uptake of semi-volatile organic compounds (SVOCs), we measured uptake of selected airborne phthalates for an individual wearing clean clothes or air-exposed clothes and compared these results with dermal uptake for bare-skinned individuals under otherwise identical experimental conditions. Using a breathing hood to isolate dermal from inhalation uptake, we measured urinary metabolites of diethylphthalate (DEP) and di-n-butylphthalate (DnBP) from an individual exposed to known concentrations of these compounds for 6 h in an experimental chamber. The individual wore either clean (fresh) cotton clothes or cotton clothes that had been exposed to the same chamber air concentrations for 9 days. For a 6-h exposure, the net amounts of DEP and DnBP absorbed when wearing fresh clothes were, respectively, 0.017 and 0.007 μg/kg/(μg/m3); for exposed clothes the results were 0.178 and 0.261 μg/kg/(μg/m3), respectively (values normalized by air concentration and body mass). When compared against the average results for bare-skinned participants, clean clothes were protective, whereas exposed clothes increased dermal uptake for DEP and DnBP by factors of 3.3 and 6.5, respectively. Even for non-occupational environments, wearing clothing that has adsorbed/absorbed indoor air pollutants can increase dermal uptake of SVOCs by substantial amounts relative to bare skin.


Environment International | 2016

Children's well-being at schools: Impact of climatic conditions and air pollution

Tunga Salthammer; Erik Uhde; Tobias Schripp; Alexandra Schieweck; Lidia Morawska; Mandana Mazaheri; Sam Clifford; Congrong He; Giorgio Buonanno; Xavier Querol; Mar Viana; Prashant Kumar

Human civilization is currently facing two particular challenges: population growth with a strong trend towards urbanization and climate change. The latter is now no longer seriously questioned. The primary concern is to limit anthropogenic climate change and to adapt our societies to its effects. Schools are a key part of the structure of our societies. If future generations are to take control of the manifold global problems, we have to offer our children the best possible infrastructure for their education: not only in terms of the didactic concepts, but also with regard to the climatic conditions in the school environment. Between the ages of 6 and 19, children spend up to 8h a day in classrooms. The conditions are, however, often inacceptable and regardless of the geographic situation, all the current studies report similar problems: classrooms being too small for the high number of school children, poor ventilation concepts, considerable outdoor air pollution and strong sources of indoor air pollution. There have been discussions about a beneficial and healthy air quality in classrooms for many years now and in recent years extensive studies have been carried out worldwide. The problems have been clearly outlined on a scientific level and there are prudent and feasible concepts to improve the situation. The growing number of publications also highlights the importance of this subject. High carbon dioxide concentrations in classrooms, which indicate poor ventilation conditions, and the increasing particle matter in urban outdoor air have, in particular, been identified as primary causes of poor indoor air quality in schools. Despite this, the conditions in most schools continue to be in need of improvement. There are many reasons for this. In some cases, the local administrative bodies do not have the budgets required to address such concerns, in other cases regulations and laws stand in contradiction to the demands for better indoor air quality, and sometimes the problems are simply ignored. This review summarizes the current results and knowledge gained from the scientific literature on air quality in classrooms. Possible scenarios for the future are discussed and guideline values proposed which can serve to help authorities, government organizations and commissions improve the situation on a global level.


Environmental Pollution | 2012

Aerosols generated by hardcopy devices and other electrical appliances.

Tunga Salthammer; Tobias Schripp; Erik Uhde; Michael Wensing

In recent years the pollution of indoor air with ultrafine particles has been an object of intensive research. Several studies have concurred in demonstrating that outdoor air makes only a limited contribution to polluting indoor air with ultrafine particles, provided significant sources in the immediate neighborhood are absent. Nowadays, electrical devices operated in homes and offices are identified as particle emission sources. A comparison of the emission rates can be made by calculating the total number of particles released with respect to the operating time. The identified particles are condensed semi-volatile organic compounds with a low percentage of non-volatile inorganic components. To characterize the indoor exposure to airborne particles, an algorithm has been developed which permits a realistic calculation of the particle intake and deposition in the human respiratory tract from measured size and time resolved particle number concentrations following the model of the International Commission on Radiological Protection.


Science of The Total Environment | 2011

Characterization of particle emission from household electrical appliances

Tobias Schripp; I. Kirsch; Tunga Salthammer

The release of ultra-fine particles from equipment of daily use is currently a topic of high public concern. The present study reports on the measurement of 12 household appliances such as toasters, grills, and hair dryers in an emission test chamber regarding the release of particles between 5.6 and 560 nm. The devices were new at the time experiments started and had never been used for their original purpose. For instance, toasters and sandwich-makers were tested without the presence of food or residues from prior usage. During the experiments the devices released aerosols with count mean diameters mainly below 100 nm. Within the operating phase high quantities of 10 nm particles are released which form larger particles by agglomeration. The origin of the particles can be attributed to the heated surfaces but cleaning these surfaces only had a minor influence on the emission strength. The released particles are evaporated in a thermodenuder between 150 °C and 200 °C. These findings indicate the particles to be formed from semi-volatile organic compounds. However, the compounds are not located on the heated surfaces and are not released as supersaturated vapor because emission is continuous over the operating phase of the device. Furthermore, the contribution of oxygen to the formation process can be neglected because the emission can also be detected in a nitrogen atmosphere. However, the presence of additional organic compounds in the surrounding air was found to be influencing the growth of the particles within the operating phase. All in all the tested household appliances were strong particle emission sources even when there was no contact with food or clothing.


Chemosphere | 2014

Impact of operating wood-burning fireplace ovens on indoor air quality.

Tunga Salthammer; Tobias Schripp; Sebastian Wientzek; Michael Wensing

The use of combustion heat sources like wood-burning fireplaces has regained popularity in the past years due to increasing energy costs. While the outdoor emissions from wood ovens are strictly regulated in Germany, the indoor release of combustion products is rarely considered. Seven wood burning fireplaces were tested in private homes between November 2012 and March 2013. The indoor air quality was monitored before, during and after operation. The following parameters were measured: ultra-fine particles (5.6-560 nm), fine particles (0.3-20 μm), PM2.5, NOx, CO, CO2, formaldehyde, acetaldehyde, volatile organic compounds (VOCs) and benzo[a]pyrene (BaP). Most ovens were significant sources of particulate matter. In some cases, an increase of benzene and BaP concentrations was observed in the indoor air. The results illustrate that wood-burning fireplaces are potential sources of indoor air contaminants, especially ultra-fine particles. Under the aspect of lowering indoor air exchange rates and increasing the use of fuels with a net zero-carbon footprint, indoor combustion sources are an important topic for the future. With regards to consumer safety, product development and inspection should consider indoor air quality in addition to the present fire protection requirements.


Science of The Total Environment | 2014

Latex paint as a delivery vehicle for diethylphthalate and di-n-butylphthalate: Predictable boundary layer concentrations and emission rates

Tobias Schripp; Tunga Salthammer; Christian Fauck; Gabriel Bekö; Charles J. Weschler

The description of emission processes of volatile and semi-volatile organic compounds (VOCs and SVOCs) from building products requires a detailed understanding of the material and the air flow conditions at the surface boundary. The mass flux between the surface of the material and air depends on the mass transfer coefficient (hm) through the boundary layer, the gas phase concentration of the target compound immediately adjacent to the material (y0), and the gas-phase concentration in bulk air (y(t)). In the present study emission experiments were performed in two chambers of quite different sizes (0.25 m(3) and 55 m(3)), and, in the larger chamber, at two different temperatures (23°C and 30°C). The emitting material was latex wall paint that had been doped with two plasticizers, diethylphthalate (DEP) and di-n-butylphthalate (DnBP). The phthalate content in the paint was varied in the small chamber experiment to evaluate the impact of the initial concentration in the bulk material (C0) on the emission rate. Boundary layer theory was applied to calculate hm for the specific phthalates from the Sherwood number (Sh) and the diffusion coefficient (Dair). Then y0 was determined based on the bulk gas-phase concentration at steady state (y¯). For both, DEP and DnBP, the y0 obtained was lower than the respective saturation vapor pressure (Ps). Furthermore, for both phthalates in latex paint, the material/air partition coefficient (C0/y0) was close in value to the octanol/air partition coefficient (KOA). This study provides a basis for designing phthalate emitting reference materials that mimic the emission behavior of common building materials.


Environmental Science & Technology | 2017

Dermal uptake of benzophenone-3 from clothing

Glenn Morrison; Gabriel Bekö; Charles J. Weschler; Tobias Schripp; Tunga Salthammer; Jonathan Hill; Anna-Maria Andersson; Jørn Toftum; Geo Clausen; Hanne Frederiksen

Benzophenone-3 (also known as BP-3 or oxybenzone) is added to sunscreens, plastics, and some coatings to filter UV radiation. The suspected endocrine disruptor BP-3 has been detected in the air and settled dust of homes and is expected to redistribute from its original sources to other indoor compartments, including clothing. Given its physical and chemical properties, we hypothesized that dermal uptake from clothing could contribute to the body burden of this compound. First, cotton shirts were exposed to air at an elevated concentration of BP-3 for 32 days; the final air concentration was 4.4 μg/m3. Next, three participants wore the exposed shirts for 3 h. After 3 h of exposure, participants wore their usual clothing during the collection of urine samples for the next 48 h. Urine was analyzed for BP-3, a metabolite (BP-1), and six other UV filters. The rate of urinary excretion of the sum of BP-1 and BP-3 increased for all participants during and following the 3 h of exposure. The summed mass of BP-1 and BP-3 excreted during the first 24 h attributable to wearing exposed t-shirts were 12, 9.9, and 82 μg for participants 1, 2, and 3, respectively. Analysis of these results, coupled with predictions of steady-state models, suggest that dermal uptake of BP-3 from clothing could meaningfully contribute to overall body burden.


Journal of Exposure Science and Environmental Epidemiology | 2017

Linking a dermal permeation and an inhalation model to a simple pharmacokinetic model to study airborne exposure to di(n-butyl) phthalate

Matthew Lorber; Charles J. Weschler; Glenn Morrison; Gabriel Bekö; Mengyan Gong; Holger M. Koch; Tunga Salthammer; Tobias Schripp; Jørn Toftum; Geo Clausen

Six males clad only in shorts were exposed to high levels of airborne di(n-butyl) phthalate (DnBP) and diethyl phthalate (DEP) in chamber experiments conducted in 2014. In two 6 h sessions, the subjects were exposed only dermally while breathing clean air from a hood, and both dermally and via inhalation when exposed without a hood. Full urine samples were taken before, during, and for 48 h after leaving the chamber and measured for key DnBP and DEP metabolites. The data clearly demonstrated high levels of DnBP and DEP metabolite excretions while in the chamber and during the first 24 h once leaving the chamber under both conditions. The data for DnBP were used in a modeling exercise linking dose models for inhalation and transdermal permeation with a simple pharmacokinetic model that predicted timing and mass of metabolite excretions. These models were developed and calibrated independent of these experiments. Tests included modeling of the “hood-on” (transdermal penetration only), “hood-off” (both inhalation and transdermal) scenarios, and a derived “inhalation-only” scenario. Results showed that the linked model tended to duplicate the pattern of excretion with regard to timing of peaks, decline of concentrations over time, and the ratio of DnBP metabolites. However, the transdermal model tended to overpredict penetration of DnBP such that predictions of metabolite excretions were between 1.1 and 4.5 times higher than the cumulative excretion of DnBP metabolites over the 54 h of the simulation. A similar overprediction was not seen for the “inhalation-only” simulations. Possible explanations and model refinements for these overpredictions are discussed. In a demonstration of the linked model designed to characterize general population exposures to typical airborne indoor concentrations of DnBP in the United States, it was estimated that up to one-quarter of total exposures could be due to inhalation and dermal uptake.

Collaboration


Dive into the Tobias Schripp's collaboration.

Top Co-Authors

Avatar

Tunga Salthammer

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Gabriel Bekö

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Geo Clausen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Jørn Toftum

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Glenn Morrison

Missouri University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lidia Morawska

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge