Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lidia Morawska is active.

Publication


Featured researches published by Lidia Morawska.


The Lancet | 2017

Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015.

Aaron Cohen; Michael Brauer; Richard T. Burnett; H. Ross Anderson; Joseph Frostad; Kara Estep; Kalpana Balakrishnan; Bert Brunekreef; Lalit Dandona; Rakhi Dandona; Valery L. Feigin; Greg Freedman; Bryan Hubbell; Haidong Kan; Luke D. Knibbs; Yang Liu; Randall V. Martin; Lidia Morawska; C. Arden Pope; Hwashin Shin; Kurt Straif; Gavin Shaddick; Matthew L. Thomas; Rita Van Dingenen; Aaron van Donkelaar; Theo Vos; Christopher J. L. Murray; Mohammad H. Forouzanfar

Summary Background Exposure to ambient air pollution increases morbidity and mortality, and is a leading contributor to global disease burden. We explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country levels. Methods We estimated global population-weighted mean concentrations of particle mass with aerodynamic diameter less than 2·5 μm (PM2·5) and ozone at an approximate 11 km × 11 km resolution with satellite-based estimates, chemical transport models, and ground-level measurements. Using integrated exposure–response functions for each cause of death, we estimated the relative risk of mortality from ischaemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, lung cancer, and lower respiratory infections from epidemiological studies using non-linear exposure–response functions spanning the global range of exposure. Findings Ambient PM2·5 was the fifth-ranking mortality risk factor in 2015. Exposure to PM2·5 caused 4·2 million (95% uncertainty interval [UI] 3·7 million to 4·8 million) deaths and 103·1 million (90·8 million 115·1 million) disability-adjusted life-years (DALYs) in 2015, representing 7·6% of total global deaths and 4·2% of global DALYs, 59% of these in east and south Asia. Deaths attributable to ambient PM2·5 increased from 3·5 million (95% UI 3·0 million to 4·0 million) in 1990 to 4·2 million (3·7 million to 4·8 million) in 2015. Exposure to ozone caused an additional 254 000 (95% UI 97 000–422 000) deaths and a loss of 4·1 million (1·6 million to 6·8 million) DALYs from chronic obstructive pulmonary disease in 2015. Interpretation Ambient air pollution contributed substantially to the global burden of disease in 2015, which increased over the past 25 years, due to population ageing, changes in non-communicable disease rates, and increasing air pollution in low-income and middle-income countries. Modest reductions in burden will occur in the most polluted countries unless PM2·5 values are decreased substantially, but there is potential for substantial health benefits from exposure reduction. Funding Bill & Melinda Gates Foundation and Health Effects Institute.


Environmental Science & Technology | 2016

Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013.

Michael Brauer; Greg Freedman; Joseph Frostad; Aaron van Donkelaar; Randall V. Martin; Frank Dentener; Rita Van Dingenen; Kara Estep; Heresh Amini; Joshua S. Apte; Kalpana Balakrishnan; Lars Barregard; David M. Broday; Valery L. Feigin; Santu Ghosh; Philip K. Hopke; Luke D. Knibbs; Yoshihiro Kokubo; Yang Liu; Stefan Ma; Lidia Morawska; José Luis Texcalac Sangrador; Gavin Shaddick; H. Ross Anderson; Theo Vos; Mohammad H. Forouzanfar; Richard T. Burnett; Aaron Cohen

Exposure to ambient air pollution is a major risk factor for global disease. Assessment of the impacts of air pollution on population health and evaluation of trends relative to other major risk factors requires regularly updated, accurate, spatially resolved exposure estimates. We combined satellite-based estimates, chemical transport model simulations, and ground measurements from 79 different countries to produce global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0.1° spatial resolution for five-year intervals from 1990 to 2010 and the year 2013. These estimates were applied to assess population-weighted mean concentrations for 1990-2013 for each of 188 countries. In 2013, 87% of the worlds population lived in areas exceeding the World Health Organization Air Quality Guideline of 10 μg/m(3) PM2.5 (annual average). Between 1990 and 2013, global population-weighted PM2.5 increased by 20.4% driven by trends in South Asia, Southeast Asia, and China. Decreases in population-weighted mean concentrations of PM2.5 were evident in most high income countries. Population-weighted mean concentrations of ozone increased globally by 8.9% from 1990-2013 with increases in most countries-except for modest decreases in North America, parts of Europe, and several countries in Southeast Asia.


Chemosphere | 2002

Combustion sources of particles. 1. Health relevance and source signatures

Lidia Morawska; Junfeng Zhang

Combustion processes result in generation of a large number of particle and gaseous products that create health and environmental risks. Of particular importance are the very small particles that are emitted in large quantities from all the combustion sources, and that have been shown to be potentially more significant in terms of their impact on health than larger particles. To control and mitigate the particles with a view of health and environmental risk reduction, a good understanding is necessary of the relative and absolute contribution from the emission sources to the airborne concentrations. This understanding could only be achieved by developing source signature libraries through direct emission measurements from the sources on one hand, and by measuring particle concentrations in the air, and apportioning them to the specific local and distant sources using the signatures, on the other hand. This paper is a review of particle characteristics that are used as source signatures as well as their general advantages and limitations. The second part of the paper reviews source signatures of the most common combustion pollution sources.


Atmospheric Environment | 1998

Comprehensive characterization of aerosols in a subtropical urban atmosphere: particle size distribution and correlation with gaseous pollutants

Lidia Morawska; Stephen Thomas; Neville D. Bofinger; David Wainwright; Donald Neale

This paper presents results of two years of monitoring and research on urban particulates with a focus on submicrometer particles, conducted as a part of an ongoing program on comprehensive characterization of fine airborne particulates and their effect on environmental and human exposures. A large number of data has been collected by the Air Monitoring and Research Station operating in the centre of the subtropical city of Brisbane. The Station is equipped in instrumentation for measurements of particle size distributions in submicrometer and supermicrometer ranges in addition to the standard instrumentation for monitoring of the criteria pollutants (PM10, ozone, sulphur dioxide, nitrogen oxides and carbon monoxide). The focus of this paper is on presenting results related to characterization of particle size distribution and concentration trends in the study period, correlation between particle characteristics measured by different instruments, correlation between particle and gaseous data and preliminary conclusions on source characteristics and source contribution for the investigated area. The average submicrometer particulate concentration in the study period was 7.4x103 particles cm-3, and the average number median diameter was 40 nm. The best correlated data are those for submicrometer particles and carbon monoxide and nitrogen oxides, suggesting the same source type. The lack of correlation between submicrometer and supermicrometer particle concentration data implies different sources for particles in these two ranges. Particle spectral analysis and correlation with gaseous data, indicate that motor vehicle emissions constitute the main source of ultra fine particles in the study area.


Indoor Air | 2013

Indoor aerosols: from personal exposure to risk assessment

Lidia Morawska; Alireza Afshari; G.N. Bae; Giorgio Buonanno; Christopher Yu Hang Chao; Otto Hänninen; Werner Hofmann; Christina Isaxon; E.R. Jayaratne; Pertti Pasanen; Tunga Salthammer; Michael S. Waring; Aneta Wierzbicka

Motivated by growing considerations of the scale, severity, and risks associated with human exposure to indoor particulate matter, this work reviewed existing literature to: (i) identify state-of-the-art experimental techniques used for personal exposure assessment; (ii) compare exposure levels reported for domestic/school settings in different countries (excluding exposure to environmental tobacco smoke and particulate matter from biomass cooking in developing countries); (iii) assess the contribution of outdoor background vs indoor sources to personal exposure; and (iv) examine scientific understanding of the risks posed by personal exposure to indoor aerosols. Limited studies assessing integrated daily residential exposure to just one particle size fraction, ultrafine particles, show that the contribution of indoor sources ranged from 19% to 76%. This indicates a strong dependence on resident activities, source events and site specificity, and highlights the importance of indoor sources for total personal exposure. Further, it was assessed that 10-30% of the total burden of disease from particulate matter exposure was due to indoor-generated particles, signifying that indoor environments are likely to be a dominant environmental factor affecting human health. However, due to challenges associated with conducting epidemiological assessments, the role of indoor-generated particles has not been fully acknowledged, and improved exposure/risk assessment methods are still needed, together with a serious focus on exposure control.


Journal of Aerosol Science | 2009

Characterization of expiration air jets and droplet size distributions immediately at the mouth opening

Christopher Chao; M.P. Wan; Lidia Morawska; Graham R. Johnson; Zoran Ristovski; Megan Hargreaves; Kerrie Mengersen; Stephen Corbett; Yuguo Li; Xiaojian Xie; David Katoshevski

Abstract Size distributions of expiratory droplets expelled during coughing and speaking and the velocities of the expiration air jets of healthy volunteers were measured. Droplet size was measured using the interferometric Mie imaging (IMI) technique while the particle image velocimetry (PIV) technique was used for measuring air velocity. These techniques allowed measurements in close proximity to the mouth and avoided air sampling losses. The average expiration air velocity was 11.7m/s for coughing and 3.9m/s for speaking. Under the experimental setting, evaporation and condensation effects had negligible impact on the measured droplet size. The geometric mean diameter of droplets from coughing was 13.5μm and it was 16.0μm for speaking (counting 1–100). The estimated total number of droplets expelled ranged from 947 to 2085 per cough and 112–6720 for speaking. The estimated droplet concentrations for coughing ranged from 2.4 to 5.2cm−3 per cough and 0.004–0.223cm−3 for speaking.


Environment International | 2015

The rise of low-cost sensing for managing air pollution in cities.

Prashant Kumar; Lidia Morawska; Claudio Martani; G. Biskos; Marina K.-A. Neophytou; Silvana Di Sabatino; Margaret Bell; Leslie K. Norford; Re Britter

Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, while addressing the major challenges for their effective implementation.


Atmospheric Environment | 2002

Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends

Lidia Morawska; E.R. Jayaratne; Kerrie Mengersen; Milan Jamriska; Stephen Thomas

Airborne particle number concentrations and size distributions as well as CO and NOx concentrations monitored at a site within the central business district of Brisbane, Australia were correlated with the traffic flow rate on a nearby freeway with the aim of investigating differences between weekday and weekend pollutant characteristics. Observations over a 5-year monitoring period showed that the mean number particle concentration on weekdays was (8.8±0.1)×103 cm−3 and on weekends (5.9±0.2)×103 cm−3—a difference of 47%. The corresponding mean particle number median diameters during weekdays and weekends were 44.2±0.3 and 50.2±0.2 nm, respectively. The differences in mean particle number concentration and size between weekdays and weekends were found to be statistically significant at confidence levels of over 99%. During a 1-year period of observation, the mean traffic flow rate on the freeway was 14.2×104 and 9.6×104 vehicles per weekday and weekend day, respectively—a difference of 48%. The mean diurnal variations of the particle number and the gaseous concentrations closely followed the traffic flow rate on both weekdays and weekends (correlation coefficient of 0.86 for particles). The overall conclusion, as to the effect of traffic on concentration levels of pollutant concentration in the vicinity of a major road (about 100 m) carrying traffic of the order of 105 vehicles per day, is that about a 50% increase in traffic flow rate results in similar increases of CO and NOx concentrations and a higher increase of about 70% in particle number concentration.


Respirology | 2012

Respiratory health effects of diesel particulate matter

Zoran Ristovski; Branka Miljevic; Nicholas C. Surawski; Lidia Morawska; Kwun M. Fong; Felicia Goh; Ian A. Yang

Particulate matter (PM) emissions involve a complex mixture of solid and liquid particles suspended in a gas, where it is noted that PM emissions from diesel engines are a major contributor to the ambient air pollution problem. While epidemiological studies have shown a link between increased ambient PM emissions and respiratory morbidity and mortality, studies of this design are not able to identify the PM constituents responsible for driving adverse respiratory health effects. This review explores in detail the physico‐chemical properties of diesel PM (DPM) and identifies the constituents of this pollution source that are responsible for the development of respiratory disease. In particular, this review shows that the DPM surface area and adsorbed organic compounds play a significant role in manifesting chemical and cellular processes that if sustained can lead to the development of adverse respiratory health effects. The mechanisms of injury involved included inflammation, innate and acquired immunity, and oxidative stress. Understanding the mechanisms of lung injury from DPM will enhance efforts to protect at‐risk individuals from the harmful respiratory effects of air pollutants.


Science of The Total Environment | 2003

A pilot investigation into associations between indoor airborne fungal and non-biological particle concentrations in residential houses in Brisbane, Australia

Megan Hargreaves; Sandhya Parappukkaran; Lidia Morawska; Jane Hitchins; Congrong He; Dale Gilbert

Indoor air contains a complex mixture of bioaerosols such as fungi, bacteria and allergens, as well as non-biological particles including products from various combustion processes. To date little work has been done to investigate the interactions and associations between particles of biological and non-biological origin, however, any occurring interactions could affect pollutant behaviour in the air and ultimately the effect they have on health. The aim of this work was to examine associations between the concentration levels of airborne particles and fungi measured in 14 residential suburban houses in Brisbane. The most frequently isolated fungal genus was Cladosporium, Curvularia, Alternaria, Fusarium and Penicillium. The average outdoor and indoor (living room) concentrations of fungal colony forming units were 1133+/-759 and 810+/-389, respectively. Average outdoor and indoor (normal ventilation) concentrations of submicrometre and supermicrometre particles were 23.8 x 10(3) and 21.7 x 10(3) (particles/cm(3)), 1.78 and 1.74 (particles/cm(3)), respectively. The study showed that no statistically significant associations between the fungal spore and submicrometre particle concentrations or PM(2.5) were present, while a weak but statistically significant relationship was found between fungal and supermicrometre particle concentrations (for the outdoors R(2)=0.4, P=0.03 and for a living room R(2)=0.3, P=0.04). A similarity in behaviour between the submicrometre particle and fungal spore concentrations was that the fungal spore concentrations were related directly to the distance from the source (a nearby park), in a very similar way in which the submicrometre particles originating from vehicle emissions from a road, were dependent on the distance to the road. In the immediate proximity to the park, fungal concentrations rose up to approximately 3100 CFU/m(3), whereas for houses more than 150 m away from the park the concentrations of fungi were below 1000 CFU/m(3). Recommendations have been provided as the future study designs to gain a deeper insight into the relationships between biological and non-biological particles.

Collaboration


Dive into the Lidia Morawska's collaboration.

Top Co-Authors

Avatar

Zoran Ristovski

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Congrong He

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Rohan Jayaratne

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Luke D. Knibbs

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Graham R. Johnson

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Godwin A. Ayoko

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mandana Mazaheri

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Sam Clifford

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Kerrie Mengersen

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Milan Jamriska

Queensland University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge