Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tobias Stork is active.

Publication


Featured researches published by Tobias Stork.


The Journal of Neuroscience | 2008

Organization and Function of the Blood–Brain Barrier in Drosophila

Tobias Stork; Daniel Engelen; Alice Krudewig; Marion Silies; Roland J. Bainton; Christian Klämbt

The function of a complex nervous system depends on an intricate interplay between neuronal and glial cell types. One of the many functions of glial cells is to provide an efficient insulation of the nervous system and thereby allowing a fine tuned homeostasis of ions and other small molecules. Here, we present a detailed cellular analysis of the glial cell complement constituting the blood–brain barrier in Drosophila. Using electron microscopic analysis and single cell-labeling experiments, we characterize different glial cell layers at the surface of the nervous system, the perineurial glial layer, the subperineurial glial layer, the wrapping glial cell layer, and a thick layer of extracellular matrix, the neural lamella. To test the functional roles of these sheaths we performed a series of dye penetration experiments in the nervous systems of wild-type and mutant embryos. Comparing the kinetics of uptake of different sized fluorescently labeled dyes in different mutants allowed to conclude that most of the barrier function is mediated by the septate junctions formed by the subperineurial cells, whereas the perineurial glial cell layer and the neural lamella contribute to barrier selectivity against much larger particles (i.e., the size of proteins). We further compare the requirements of different septate junction components for the integrity of the blood–brain barrier and provide evidence that two of the six Claudin-like proteins found in Drosophila are needed for normal blood–brain barrier function.


Current Opinion in Neurobiology | 2005

Neuron-glia interaction in the insect nervous system.

Gundula Edenfeld; Tobias Stork; Christian Klämbt

In all complex organisms, glial cells are pivotal for neuronal development and function. Insects are characterized by having only a small number of these cells, which nevertheless display a remarkable molecular diversity. An intricate relationship between neurons and glia is initially required for glial migration and during axonal patterning. Recent data suggest that in organisms such as Drosophila, a prime role of glial cells lies in setting boundaries to guide and constrain axonal growth.


The Journal of Neuroscience | 2007

Glial Cell Migration in the Eye Disc

Marion Silies; Yeliz Yuva; Daniel Engelen; Annukka Aho; Tobias Stork; Christian Klämbt

Any complex nervous system is made out of two major cell types, neurons and glial cells. A hallmark of glial cells is their pronounced ability to migrate. En route to their final destinations, glial cells are generally guided by neuronal signals. Here we show that in the developing visual system of Drosophila glial cell migration is largely controlled by glial–glial interactions and occurs independently of axonal contact. Differentiation into wrapping glia is initiated close to the morphogenetic furrow. Using single cell labeling experiments we identified six distinct glial cell types in the eye disc. The migratory glial population is separated from the wrapping glial cells by the so-called carpet cells, extraordinary large glial cells, each covering a surface area of ∼10,000 epithelial cells. Subsequent cell ablation experiments demonstrate that the carpet glia regulates glial migration in the eye disc epithelium and suggest a new model underlying glial migration and differentiation in the developing visual system.


Developmental Cell | 2003

The Drosophila Cell Survival Gene discs lost Encodes a Cytoplasmic Codanin-1-like Protein, Not a Homolog of Tight Junction PDZ Protein Patj

Jan Pielage; Tobias Stork; Ingrid Bunse; Christian Klämbt

The Drosophila gene discs lost (dlt) has been reported to encode a homolog of the vertebrate tight junction PDZ protein Patj, and was thought to play a role in cell polarity. Using rescue experiments and sequence analyses, we show that dlt mutations disrupt the Drosophila Codanin-1 homolog, a cytoplasmic protein, and not the PDZ protein. Mutations in human Codanin-1 are associated with congenital dyserythropoietic anemia type I (CDA I). In Drosophila, the genomic organization of dlt is unusual. dlt shares its first untranslated exon with alpha-spectrin, and both genes are coexpressed throughout development. We show that dlt is not required for cell polarity but is needed for cell survival and cell cycle progression. Finally, we present evidence that the PDZ protein previously thought to be encoded by dlt is not required for viability. We propose to rename this PDZ protein after its vertebrate homolog, Patj (Pals-associated tight junction protein).


Development | 2009

Drosophila Neurexin IV stabilizes neuron-glia interactions at the CNS midline by binding to Wrapper.

Tobias Stork; Silke Thomas; Floriano Rodrigues; Marion Silies; Elke Naffin; Stephanie Wenderdel; Christian Klämbt

Ensheathment of axons by glial membranes is a key feature of complex nervous systems ensuring the separation of single axons or axonal fascicles. Nevertheless, the molecules that mediate the recognition and specific adhesion of glial and axonal membranes are largely unknown. We use the Drosophila midline of the embryonic central nervous system as a model to investigate these neuron glia interactions. During development, the midline glial cells acquire close contact to commissural axons and eventually extend processes into the commissures to wrap individual axon fascicles. Here, we show that this wrapping of axons depends on the interaction of the neuronal transmembrane protein Neurexin IV with the glial Ig-domain protein Wrapper. Although Neurexin IV has been previously described to be an essential component of epithelial septate junctions (SJ), we show that its function in mediating glial wrapping at the CNS midline is independent of SJ formation. Moreover, differential splicing generates two different Neurexin IV isoforms. One mRNA is enriched in septate junction-forming tissues, whereas the other mRNA is expressed by neurons and recruited to the midline by Wrapper. Although both Neurexin IV isoforms are able to bind Wrapper, the neuronal isoform has a higher affinity for Wrapper. We conclude that Neurexin IV can mediate different adhesive cell-cell contacts depending on the isoforms expressed and the context of its interaction partners.


Mechanisms of Development | 2006

mummy encodes an UDP-N-acetylglucosamine-dipohosphorylase and is required during Drosophila dorsal closure and nervous system development

Kristina Schimmelpfeng; Mareike Strunk; Tobias Stork; Christian Klämbt

Throughout development cell-cell interactions are of pivotal importance. Cells bind to each other or share information via secreted signaling molecules. To a large degree, these processes are modulated by post-translational modifications of membrane proteins. Glycan-chains are frequently added to membrane proteins and assist their exact function at the cell surface. In addition, the glycosylation pathway is required to generate GPI-linkage in the endoplasmatic reticulum. Here, we describe the analysis of the cabrio/mummy gene, which encodes an UDP-N-acetylglucosamine diphosphorylase. This is a well-conserved and central enzyme in the glycosylation pathway. As expected from this central role in glycosylation, cabrio/mummy mutants show many phenotypic traits ranging from CNS fasciculation defects to defects in dorsal closure and eye development. These phenotypes correlate well with specific glycosylation and GPI-anchorage defects in mummy mutants.


Development | 2007

Distinct functions of α-Spectrin and β-Spectrin during axonal pathfinding

Jörn Hülsmeier; Jan Pielage; Christof Rickert; Gerd M. Technau; Christian Klämbt; Tobias Stork

Cell-shape changes during development require a precise coupling of the cytoskeleton with proteins situated in the plasma membrane. Important elements controlling the shape of cells are the Spectrin proteins that are expressed as a subcortical cytoskeletal meshwork linking specific membrane receptors with F-actin fibers. Here, we demonstrate that Drosophila karussell mutations affect β-spectrin and lead to distinct axonal patterning defects in the embryonic CNS. karussell mutants display a slit-sensitive axonal phenotype characterized by axonal looping in stage-13 embryos. Further analyses of individual, labeled neuroblast lineages revealed abnormally structured growth cones in these animals. Cell-type-specific rescue experiments demonstrate that β-Spectrin is required autonomously and non-autonomously in cortical neurons to allow normal axonal patterning. Within the cell, β-Spectrin is associated withα -Spectrin. We show that expression of the two genes is tightly regulated by post-translational mechanisms. Loss of β-Spectrin significantly reduces levels of neuronal α-Spectrin expression, whereas gain of β-Spectrin leads to an increase in α-Spectrin protein expression. Because the loss of α-spectrin does not result in an embryonic nervous system phenotype, β-Spectrin appears to act at least partially independent of α-Spectrin to control axonal patterning.


Development | 2007

Distinct functions of alpha-Spectrin and beta-Spectrin during axonal pathfinding.

Jörn Hülsmeier; Jan Pielage; Christof Rickert; Gerhard M. Technau; Christian Klämbt; Tobias Stork

Cell-shape changes during development require a precise coupling of the cytoskeleton with proteins situated in the plasma membrane. Important elements controlling the shape of cells are the Spectrin proteins that are expressed as a subcortical cytoskeletal meshwork linking specific membrane receptors with F-actin fibers. Here, we demonstrate that Drosophila karussell mutations affect β-spectrin and lead to distinct axonal patterning defects in the embryonic CNS. karussell mutants display a slit-sensitive axonal phenotype characterized by axonal looping in stage-13 embryos. Further analyses of individual, labeled neuroblast lineages revealed abnormally structured growth cones in these animals. Cell-type-specific rescue experiments demonstrate that β-Spectrin is required autonomously and non-autonomously in cortical neurons to allow normal axonal patterning. Within the cell, β-Spectrin is associated withα -Spectrin. We show that expression of the two genes is tightly regulated by post-translational mechanisms. Loss of β-Spectrin significantly reduces levels of neuronal α-Spectrin expression, whereas gain of β-Spectrin leads to an increase in α-Spectrin protein expression. Because the loss of α-spectrin does not result in an embryonic nervous system phenotype, β-Spectrin appears to act at least partially independent of α-Spectrin to control axonal patterning.


The Journal of Neuroscience | 2011

The CD59 Family Member Leaky/Coiled Is Required for the Establishment of the Blood–Brain Barrier in Drosophila

Mubarak Hussain Syed; Alice Krudewig; Daniel Engelen; Tobias Stork; Christian Klämbt

The blood–brain barrier of Drosophila is established by the subperineurial glial cells that encase the CNS and PNS. The subperineurial glial cells are thin, highly interdigitated cells with epithelial character. The establishment of extensive septate junctions between these cells is crucial for the prevention of uncontrolled paracellular leakage of ions and solutes from the hemolymph into the nervous system. In the absence of septate junctions, macromolecules such as fluorescently labeled dextran can easily cross the blood–brain barrier. To identify additional components of the blood–brain barrier, we followed a genetic approach and injected Texas-Red-conjugated dextran into the hemolymph of embryos homozygous for chromosomal deficiencies. In this way, we identified the 153-aa-large protein Coiled, a new member of the Ly6 (leukocyte antigen 6) family, as being crucially required for septate junction formation and blood–brain barrier integrity. In coiled mutants, the normal distribution of septate junction markers such as NeurexinIV, Coracle, or Discs large is disturbed. EM analyses demonstrated that Coiled is required for the formation of septate junctions. We further show that Coiled is expressed by the subsperineurial glial cells in which it is anchored to the cell membrane via a glycosylphosphatidylinositol anchor and mediates adhesive properties. Clonal rescue studies indicate that the presence of Coiled is required symmetrically on both cells engaged in septate junction formation.


Neuron Glia Biology | 2007

Development of the peripheral glial cells in Drosophila.

Marion Silies; Gundula Edenfeld; Daniel Engelen; Tobias Stork; Christian Klämbt

In complex organisms the nervous system comprises two cell types: neurons and glial cells. Their correct interplay is of crucial importance during both the development of the nervous system and for later function of the nervous system. In recent years tools have been developed for Drosophila that enable genetic approaches to understanding glial development and differentiation. Focusing on peripheral glial cells we first summarize wild-type development, then introduce some of the relevant genes that have been identified. Despite obvious differences between Drosophila and mammalian glial cells, the molecular machinery that controls terminal differentiation appears well conserved.

Collaboration


Dive into the Tobias Stork's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Pielage

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge