Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tobias W. Donath is active.

Publication


Featured researches published by Tobias W. Donath.


Applied Vegetation Science | 2003

The impact of site conditions and seed dispersal on restoration success in alluvial meadows

Tobias W. Donath; Norbert Hölzel; Annette Otte

Abstract We studied the restoration success of flood plain meadows in the northern Upper Rhine valley, where between 1988 and 1992, 35 ha of arable land was converted into grassland and subsequently managed for nature conservation. Remnant populations of typical alluvial meadow species were found in old meadows and along drainage ditches that dissect the whole area. We analysed the site conditions and phytosociological relevés in old and new meadows. Small differences in site parameters between old and new meadows contrasted with a clear floristic differentiation between the two meadow types. The vegetation of old meadows was much more differentiated along prevailing environmental gradients than the vegetation of new meadows. Despite the favourable site conditions for the re-establishment of species-rich meadows on the former arable land, restoration success was limited to the vicinity of remnant stands. In contrast to old meadows, indicator species of new grassland were still typical species of regularly disturbed ruderal and arable habitats, often capable of building up a persistent seed bank. The precise mapping of 23 target species revealed that even wind dispersal predominantly leads to re-establishment in the close circumference of parent plants. We found no indication that regular flooding, hay-making and autumnal grazing had an impact on recolonization of newly created grassland. Even under favourable conditions for the re-establishment of target species, restoration success in alluvial meadows proved to be strongly dispersal limited. We discuss the implications of our findings for future restoration management in grasslands. Nomenclature: Wisskirchen & Haeupler (1998).


Journal of Ecology | 2013

Effects of litter on seedling establishment in natural and semi‐natural grasslands: a meta‐analysis

Alejandro Loydi; R. Lutz Eckstein; Annette Otte; Tobias W. Donath

1. Plant litter is a key component in terrestrial ecosystems. It plays a major role in nutrient cycles and community organization. Land use and climate change may change the accumulation of litter in herbaceous ecosystems and affect plant community dynamics. Additionally, the transfer of seeds containing plant material (i.e. litter) is a widespread technique in grassland restoration.2. Ecosystem responses to litter represent the outcome of interactions, whose sign and strength will depend on many variables (e. g. litter amount, seed size). A previous meta-analysis (from 1999) reported that litter had an overall negative effect on seed germination and seedling establishment in different ecosystems. However, recent studies indicated that this might not be the case in grassland ecosystems.3. We used 914 data from 46 independent studies to analyse the effects of litter on seedling (i) emergence, (ii) survival and (iii) biomass, employing meta-analytical techniques. Each data set was stratified according to methodology, grassland type, irrigation conditions, litter amount and seed size.4. We found an overall neutral effect of litter presence on seedling emergence and survival and a positive effect on seedling biomass. However, whereas for field experiments the response remained neutral, it was positive for common garden studies. In glasshouse experiments, litter effects were negative for emergence and positive for biomass.5. Litter may have a positive effect on seedling recruitment in dry grasslands or under water-limited conditions, or in the presence of low to medium litter amounts ( 500 g m(-2)) will inhibit seedling recruitment. Large seeds showed a more positive response to litter presence with respect to seedling emergence and survival, but not concerning biomass.6. Synthesis. Under dry conditions (e. g. dry grasslands or dry periods) or with low to medium litter amounts, litter presence has a positive effect on seedling establishment. However, climate and land use change may promote litter accumulation and reduce seedling establishment, affecting grasslands composition and ecosystem functions.


Plant Ecology | 2010

Effects of bryophytes and grass litter on seedling emergence vary by vertical seed position and seed size

Tobias W. Donath; R. Lutz Eckstein

Establishment of plants through seeds is often constrained by the quality of microsites, which is in part controlled by the nature and amount of ground cover. The latter consists of living shoots of vascular plants or bryophytes and/or the dead remains of the dominant species. In the present article, we report the results of a controlled pot experiment with five species characteristic of floodplain grasslands. We manipulated the amounts of grass litter and/or mosses to study (1) differences between ground cover types with respect to their effects on microenvironment and seedling emergence and (2) how these effects interact with seed size and seed sowing position. Increasing amounts of both cover types led to increasing soil humidity, whereas temperature amplitude and illumination were decreased. However, since grass litter decomposed much faster than bryophytes, light conditions for germination under grass litter improved considerably with time. Although seedling emergence varied significantly between species, ground cover types and cover amounts, seed position alone explained about 50% of the variation in the data set. Additionally, we found an important interaction between seed size, seed position and cover type: large-seeded species showed a fitness advantage when seeds were situated beneath a cover, irrespective of cover type, which disappeared when seeds were shed on top of a cover layer. We suggest that this interaction may be ecologically and evolutionarily relevant because it may lead to changes in species composition and diversity of plant communities as a consequence of changes in the amount and type of ground cover.


Phytocoenologia | 2005

Ephemeral wetland vegetation in irregularly flooded arable fields along the northern Upper Rhine: the importance of persistent seedbanks

Stephanie Bissels; Tobias W. Donath; Norbert Hölzel; Annette Otte

Along the northern Upper Rhine ephemeral wetland vegetation is not confined to primary habitats such as the fringes of backwaters and river banks, but is also found in irregularly flooded arable fields. Within these highly variable environments, where disturbance is not only by flooding but also by agricultural management, we assessed the role of seedbanks for the persistence of ephemeral vegetation. In order to achieve this, we analysed the floristic composition of the above-ground vegetation and the correspond- ing soil seedbank of arable fields after a long-lasting spring and early summer flood in 2001. Moreover, we compared our vegetation data with other phytosociological studies from primary and secondary habitats along the northern Upper Rhine. The comparison between primary and secondary habitats of mudflat species revealed differences in species composition. While primary habitats were characterised by the pre- dominance of species of Isoeto-Nanojuncetea and B identetea, secondary habitats contained additionally species of the classes Agrostietea and S tellarietea. The studied soil seedbanks were dominated by species typical of both, mudflat and agri- cultural habitats. Most species found in the seedbank were characterised by short life cycles and the ability to rapidly exploit periods of favourable conditions for germination and growth. The flooding treatments that were applied prior to the third season of seed- bank analysis almost generally resulted in a high proportion of additional germination of mudflat species, even two years after the start of the analysis. The emergence of some mudflat species such as Gnaphalium uliginosum, Veronica peregrina and semi-aquatic helophytes such as Alisma lanceolatum and A. plantago-aquatica was actually confined to the flooding treatment. Seed densities were exceptionally high and increased with the duration and frequency of inundation at the sampling sites. Juncus bufonius, Ranunculus sceleratus and Veronica catenata were the most abundant species. For Juncus bufonius we found a maximum seed density of 707,072 seeds m Ð2 , which is to our knowledge the highest seed concentration that was ever found in a higher plant. The large persistent soil seedbanks proved to be of outstanding importance for the emergence of ephemeral wetland vegetation after flood disturbances in arable fields. This was also reflected by the relatively high similarity be- tween the seedbank and the established vegetation directly after flooding. Our study highlights the importance of irregularly flooded arable fields as a secondary habitat for the conservation of ephemeral wetland species. At these sites, not only im- proved drainage and landfill threatens the occurrence of mudflat vegetation but also the replenishment of the seedbank is often prevented by early re-ploughing of the fields.


Seed Science Research | 2008

Chemical effects of a dominant grass on seed germination of four familial pairs of dry grassland species

Eszter Ruprecht; Tobias W. Donath; Annette Otte; R. Lutz Eckstein

Community composition and ecosystem processes during succession may be driven partly by traits of plant species that attain dominance. Here, we addressed the hypothesis that Stipa pulcherrima, the dominant grass of abandoned continental grasslands, controls seedling recruitment of co-occurring species through chemical effects of its litter. Eight species with successful and unsuccessful recruitment under field conditions were selected (four familial pairs) to study experimentally the effects of leaf leachate under four temperature regimes. Since fungi developed in leachate-treated Petri dishes, in another experiment seeds were surface sterilized to remove confounding effects of fungi on recruitment. Leachate affected various stages of seedling recruitment: it significantly reduced seed germination (by 33‐94%) and radicle elongation, and it delayed germination of seedlings of all species. In two families, species with unsuccessful field recruitment were more negatively affected than the successful ones. In a third family, the species with successful recruitment was more negatively affected, and in the fourth there were no differences. Similar germination responses after exclusion of fungi through seed-surface sterilization suggested that leachate was responsible for the observed effects on recruitment. Besides other traits and physical/microclimatic effects of accumulating litter, S. pulcherrima influences plant community dynamics and may potentially affect ecosystem processes through its secondary compounds.


Biological Invasions | 2015

Non-native species litter reduces germination and growth of resident forbs and grasses: allelopathic, osmotic or mechanical effects?

Alejandro Loydi; Tobias W. Donath; Rolf Lutz Eckstein; Annette Otte

Non-native plant species may contain allelopathic substances that might help to out-compete native vegetation. These allelochemicals may be released from live or dead plant tissues and be accumulated in the soil. We tested whether non-native species leaf litter and their leachates reduced seedling establishment and growth of native species. We subjected seeds of six native species to the effect of litter leachates of three of the most important invasive plants in Europe and to mannitol solutions with similar osmotic potential in germination chamber experiments. Additionally, we measured the effect of the same litter on emergence and growth of the native species in an outdoor pot experiment. Litter leachates delayed and reduced germination and affected initial root growth of all native species. The effects of leachates were significantly higher than those of mannitol, indicating the action of toxic, most probably allelochemical substances. Emergence of seedlings in pots was also reduced, but total biomass per pot was not affected and biomass per seedling increased. Allelochemicals may affect germination and early stages of seedling recruitment. However, these negative effects seem to cease shortly after germination, when other mechanisms such as competition may be more important. Consequently, litter-borne allelochemicals are unlikely to drive the invasion of the studied non-native species, but they may contribute to maintain mono-dominant stands reinforcing invasion success.


Seed Science Research | 2014

Differential effects of reduced water potential on the germination of floodplain grassland species indicative of wet and dry habitats

Kristin Ludewig; Bianka Zelle; R. Lutz Eckstein; Eva Mosner; Annette Otte; Tobias W. Donath

Floodplain meadow ecosystems are characterized by high water level fluctuations and highly variable soil water potentials. Additionally, climate change scenarios indicate an increasing risk for summer drought along the northern Upper Rhine and the Middle Elbe River, Germany. While adult plants often persist even after strong changes in water availability, early life phases, such as seed germination and seedling establishment, might be more vulnerable. Therefore we tested whether reduced soil water potentials will affect the germination of meadow species and whether the response varies between (1) forbs indicative of wet and dry habitats and (2) seeds originating from sites along the rivers Elbe and Rhine. We exposed seeds of 20 floodplain meadow species with different moisture requirements from five plant families to a water potential gradient ranging from 0 to -1.5MPa. While across species germination percentage and synchrony decreased, germination time increased at reduced water potentials. Germination of the species indicative of dry habitats decreased more strongly, was slower and less synchronous at reduced water potentials than that of species indicative of wet habitats. Seeds from sites along the rivers Elbe and Rhine did not differ in their germination characteristics. We propose that species of wet sites follow an all-or-nothing-strategy with fast and synchronous germination to maximize competitive advantages, betting on a high probability of moist conditions for establishment (optimists). In contrast, species from dry sites appear to follow a bet-hedging strategy with a moisture-sensing mechanism for unsuitable conditions (pessimists), resulting in a slower and less synchronous germination.


PLOS ONE | 2012

Invasibility of a nutrient-poor pasture through resident and non-resident herbs is controlled by litter, gap size and propagule pressure.

Rolf Lutz Eckstein; Diana Ruch; Annette Otte; Tobias W. Donath

Since inference concerning the relative effects of propagule pressure, biotic interactions, site conditions and species traits on the invasibility of plant communities is limited, we carried out a field experiment to study the role of these factors for absolute and relative seedling emergence in three resident and three non-resident confamilial herb species on a nutrient-poor temperate pasture. We set up a factorial field experiment with two levels each of the factors litter cover (0 and 400 g m−2), gap size (0.01 and 0.1 m2) and propagule pressure (5 and 50 seeds) and documented soil temperature, soil water content and relative light availability. Recruitment was recorded in spring and autumn 2010 and in spring 2011 to cover initial seedling emergence, establishment after summer drought and final establishment after the first winter. Litter alleviated temperature and moisture conditions and had positive effects on proportional and absolute seedling emergence during all phases of recruitment. Large gaps presented competition-free space with high light availability but showed higher temperature amplitudes and lower soil moisture. Proportional and absolute seedling recruitment was significantly higher in large than in small gaps. In contrast, propagule pressure facilitated absolute seedling emergence but had no effects on proportional emergence or the chance for successful colonisation. Despite significantly higher initial seedling emergence of resident than non-resident species, seed mass and other species-specific traits may be better predictors for idiosyncratic variation in seedling establishment than status. Our data support the fluctuating resource hypothesis and demonstrate that the reserve effect of seeds may facilitate seedling emergence. The direct comparison of propagule pressure with other environmental factors showed that propagule pressure affects absolute seedling abundance, which may be crucial for species that depend on other individuals for sexual reproduction. However, propagule batch size did not significantly affect the chance for successful colonisation of disturbed plots.


Plant Biology | 2011

Litter effects on seedling establishment interact with seed position and earthworm activity

Tobias W. Donath; Rolf Lutz Eckstein

Seedling establishment is influenced by litter cover and by seed predators, but little is known about interactions between these two factors. We tested their effects on emergence of five typical grassland species in a microcosm experiment. We manipulated the amounts of grass litter, seed sowing position and earthworm activity to determine whether: (i) the protective effect of litter against seed predation depends on cover amount and seed sowing position, i.e., on top or beneath litter; (ii) seed transport by earthworms changes the effect of seed sowing position on seedling emergence; and (iii) seeds transported into deeper soil layers by earthworms are still germinable. Litter cover and presence of earthworms lowered seedling emergence. The impact of seed position increased with seed size. Emergence of large-seeded species was reduced when sown on the surface. Additionally, we found an important seed position × earthworm interaction related to seed size. Emergence of large-seeded species sown on top of the litter was up to three times higher when earthworms were present than without earthworms. Earthworms also significantly altered the depth distribution of seeds in the soil and across treatments: on average 6% of seeds germinated after burial. In contrast to the seed position effect, we found no size effect on mobility and germinability of seeds after burial in the soil. Nevertheless, the fate of different-sized seeds may differ. While burial will remove large seeds from the regeneration pool, it may enhance seed bank build up in small-seeded species. Consequently, changes in the amount of litter cover and the invertebrate community play a significant role in plant community composition.


Plant Biology | 2015

Negative and positive interactions among plants: effects of competitors and litter on seedling emergence and growth of forest and grassland species.

Alejandro Loydi; Tobias W. Donath; Annette Otte; Rolf Lutz Eckstein

Living plant neighbours, but also their dead aboveground remains (i.e. litter), may individually exert negative or positive effects on plant recruitment. Although living plants and litter co-occur in most ecosystems, few studies have addressed their combined effects, and conclusions are ambivalent. Therefore, we examined the response in terms of seedling emergence and growth of herbaceous grassland and forest species to different litter types and amounts and the presence of competitors. We conducted a pot experiment testing the effects of litter type (grass, oak), litter amount (low, medium, high) and interspecific competition (presence or absence of four Festuca arundinacea individuals) on seedling emergence and biomass of four congeneric pairs of hemicryptophytes from two habitat types (woodland, grassland). Interactions between litter and competition were weak. Litter presence increased competitor biomass. It also had positive effects on seedling emergence at low litter amounts and negative effects at high litter amounts, while competition had no effect on seedling emergence. Seedling biomass was negatively affected by the presence of competitors, and this effect was stronger in combination with high amounts of litter. Litter affected seedling emergence while competition determined the biomass of the emerged individuals, both affecting early stages of seedling recruitment. High litter accumulation also reduced seedling biomass, but this effect seemed to be additive to competitor effects. This suggests that live and dead plant mass can affect species recruitment in natural systems, but the mechanisms by which they operate and their timing differ.

Collaboration


Dive into the Tobias W. Donath's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge