Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Lutz Eckstein is active.

Publication


Featured researches published by R. Lutz Eckstein.


Journal of Ecology | 2013

Effects of litter on seedling establishment in natural and semi‐natural grasslands: a meta‐analysis

Alejandro Loydi; R. Lutz Eckstein; Annette Otte; Tobias W. Donath

1. Plant litter is a key component in terrestrial ecosystems. It plays a major role in nutrient cycles and community organization. Land use and climate change may change the accumulation of litter in herbaceous ecosystems and affect plant community dynamics. Additionally, the transfer of seeds containing plant material (i.e. litter) is a widespread technique in grassland restoration.2. Ecosystem responses to litter represent the outcome of interactions, whose sign and strength will depend on many variables (e. g. litter amount, seed size). A previous meta-analysis (from 1999) reported that litter had an overall negative effect on seed germination and seedling establishment in different ecosystems. However, recent studies indicated that this might not be the case in grassland ecosystems.3. We used 914 data from 46 independent studies to analyse the effects of litter on seedling (i) emergence, (ii) survival and (iii) biomass, employing meta-analytical techniques. Each data set was stratified according to methodology, grassland type, irrigation conditions, litter amount and seed size.4. We found an overall neutral effect of litter presence on seedling emergence and survival and a positive effect on seedling biomass. However, whereas for field experiments the response remained neutral, it was positive for common garden studies. In glasshouse experiments, litter effects were negative for emergence and positive for biomass.5. Litter may have a positive effect on seedling recruitment in dry grasslands or under water-limited conditions, or in the presence of low to medium litter amounts ( 500 g m(-2)) will inhibit seedling recruitment. Large seeds showed a more positive response to litter presence with respect to seedling emergence and survival, but not concerning biomass.6. Synthesis. Under dry conditions (e. g. dry grasslands or dry periods) or with low to medium litter amounts, litter presence has a positive effect on seedling establishment. However, climate and land use change may promote litter accumulation and reduce seedling establishment, affecting grasslands composition and ecosystem functions.


Plant Ecology | 2010

Effects of bryophytes and grass litter on seedling emergence vary by vertical seed position and seed size

Tobias W. Donath; R. Lutz Eckstein

Establishment of plants through seeds is often constrained by the quality of microsites, which is in part controlled by the nature and amount of ground cover. The latter consists of living shoots of vascular plants or bryophytes and/or the dead remains of the dominant species. In the present article, we report the results of a controlled pot experiment with five species characteristic of floodplain grasslands. We manipulated the amounts of grass litter and/or mosses to study (1) differences between ground cover types with respect to their effects on microenvironment and seedling emergence and (2) how these effects interact with seed size and seed sowing position. Increasing amounts of both cover types led to increasing soil humidity, whereas temperature amplitude and illumination were decreased. However, since grass litter decomposed much faster than bryophytes, light conditions for germination under grass litter improved considerably with time. Although seedling emergence varied significantly between species, ground cover types and cover amounts, seed position alone explained about 50% of the variation in the data set. Additionally, we found an important interaction between seed size, seed position and cover type: large-seeded species showed a fitness advantage when seeds were situated beneath a cover, irrespective of cover type, which disappeared when seeds were shed on top of a cover layer. We suggest that this interaction may be ecologically and evolutionarily relevant because it may lead to changes in species composition and diversity of plant communities as a consequence of changes in the amount and type of ground cover.


Molecular Ecology Resources | 2013

Scoring and analysis of methylation‐sensitive amplification polymorphisms for epigenetic population studies

Benjamin Schulz; R. Lutz Eckstein; Walter Durka

DNA methylation is an important, heritable epigenetic modification in most eukaryotic organisms that is connected with numerous biological processes. To study the impact of natural epigenetic variation in an ecological or evolutionary context, epigenetic studies are increasingly using methylation‐sensitive amplification polymorphism (MSAP) for surveys at the population or species level. However, no consensus exists on how to interpret and score the multistate information obtained from the MSAP banding patterns. Here, we review the previously used scoring approaches for population epigenetic studies and develop new alternatives. To assess effects of the different approaches on parameters of epigenetic diversity and differentiation, we applied eight scoring schemes to a case study of three populations of the plant species Viola elatior. For a total number of 168 detected polymorphic MSAP fragments, the number of ultimately scored polymorphic epiloci ranged between 78 and 286 depending on the particular scoring scheme. Both, estimates of epigenetic diversity and differentiation varied strongly between scoring approaches. However, linear regression and PCoA revealed qualitatively similar patterns, suggesting that the scoring approaches are largely consistent. For single‐locus analyses of MSAP data, for example the search for loci under selection, we advocate a new scoring approach that separately takes into account different methylation types and thus seems appropriate for drawing more detailed conclusions in ecological or evolutionary contexts. An R script (MSAP_score.r) for scoring and basic data analysis is provided.


Seed Science Research | 2008

Chemical effects of a dominant grass on seed germination of four familial pairs of dry grassland species

Eszter Ruprecht; Tobias W. Donath; Annette Otte; R. Lutz Eckstein

Community composition and ecosystem processes during succession may be driven partly by traits of plant species that attain dominance. Here, we addressed the hypothesis that Stipa pulcherrima, the dominant grass of abandoned continental grasslands, controls seedling recruitment of co-occurring species through chemical effects of its litter. Eight species with successful and unsuccessful recruitment under field conditions were selected (four familial pairs) to study experimentally the effects of leaf leachate under four temperature regimes. Since fungi developed in leachate-treated Petri dishes, in another experiment seeds were surface sterilized to remove confounding effects of fungi on recruitment. Leachate affected various stages of seedling recruitment: it significantly reduced seed germination (by 33‐94%) and radicle elongation, and it delayed germination of seedlings of all species. In two families, species with unsuccessful field recruitment were more negatively affected than the successful ones. In a third family, the species with successful recruitment was more negatively affected, and in the fourth there were no differences. Similar germination responses after exclusion of fungi through seed-surface sterilization suggested that leachate was responsible for the observed effects on recruitment. Besides other traits and physical/microclimatic effects of accumulating litter, S. pulcherrima influences plant community dynamics and may potentially affect ecosystem processes through its secondary compounds.


Annals of Botany | 2012

Range expansion of a selfing polyploid plant despite widespread genetic uniformity.

Nicole Voss; R. Lutz Eckstein; Walter Durka

BACKGROUND AND AIMS Ongoing and previous range expansions have a strong influence on population genetic structure of plants. In turn, genetic variation in the new range may affect the population dynamics and the expansion process. The annual Ceratocapnos claviculata (Papaveraceae) has expanded its Atlantic European range in recent decades towards the north and east. Patterns of genetic diversity were investigated across the native range to assess current population structure and phylogeographical patterns. A test was then made as to whether genetic diversity is reduced in the neophytic range and an attempt was made to identify source regions of the expansion. METHODS Samples were taken from 55 populations in the native and 34 populations in the neophytic range (Sweden, north-east Germany). Using amplified fragment length polymorphism markers an analysis was made of genetic variation and population structure (Bayesian statistical modelling) and population differentiation was quantified. Pollen/ovule ratio was analysed as a proxy for the breeding system. KEY RESULTS Genetic diversity at population level was very low (mean H(e) = 0·004) and two multilocus genotypes dominated large parts of the new range. Population differentiation was strong (F(ST) = 0·812). These results and a low pollen/ovule ratio are consistent with an autogamous breeding system. Genetic variation decreased from the native to the neophytic range. Within the native range, H(e) decreased towards the north-east, whereas population size increased. According to the Bayesian cluster analysis, the putative source regions of the neophytic range are situated in north-west Germany and adjacent regions. CONCLUSIONS Ceratocapnos claviculata shows a cline of genetic variation due to postglacial recolonization from putative Pleistocene refugia in south-west Europe. Nevertheless, the species has expanded successfully during the past 40 years to southern Sweden and north-east Germany where it occurs as an opportunistic neophyte. Recent expansion was mainly human-mediated by single long-distance diaspore transport and was facilitated by habitat modification.


Annals of Botany | 2011

Predicted changes in vegetation structure affect the susceptibility to invasion of bryophyte-dominated subarctic heath.

R. Lutz Eckstein; Eva Pereira; Ann Milbau; Bente J. Graae

BACKGROUND AND AIMS A meta-analysis of global change experiments in arctic tundra sites suggests that plant productivity and the cover of shrubs, grasses and dead plant material (i.e. litter) will increase and the cover of bryophytes will decrease in response to higher air temperatures. However, little is known about which effects these changes in vegetation structure will have on seedling recruitment of species and invasibility of arctic ecosystems. METHODS A field experiment was done in a bryophyte-dominated, species-rich subarctic heath by manipulating the cover of bryophytes and litter in a factorial design. Three phases of seedling recruitment (seedling emergence, summer seedling survival, first-year recruitment) of the grass Anthoxanthum alpinum and the shrub Betula nana were analysed after they were sown into the experimental plots. KEY RESULTS Bryophyte and litter removal significantly increased seedling emergence of both species but the effects of manipulations of vegetation structure varied strongly for the later phases of recruitment. Summer survival and first-year recruitment were significantly higher in Anthoxanthum. Although bryophyte removal generally increased summer survival and recruitment, seedlings of Betula showed high mortality in early August on plots where bryophytes had been removed. CONCLUSIONS Large species-specific variation and significant effects of experimental manipulations on seedling recruitment suggest that changes in vegetation structure as a consequence of global warming will affect the abundance of grasses and shrubs, the species composition and the susceptibility to invasion of subarctic heath vegetation.


Seed Science Research | 2014

Differential effects of reduced water potential on the germination of floodplain grassland species indicative of wet and dry habitats

Kristin Ludewig; Bianka Zelle; R. Lutz Eckstein; Eva Mosner; Annette Otte; Tobias W. Donath

Floodplain meadow ecosystems are characterized by high water level fluctuations and highly variable soil water potentials. Additionally, climate change scenarios indicate an increasing risk for summer drought along the northern Upper Rhine and the Middle Elbe River, Germany. While adult plants often persist even after strong changes in water availability, early life phases, such as seed germination and seedling establishment, might be more vulnerable. Therefore we tested whether reduced soil water potentials will affect the germination of meadow species and whether the response varies between (1) forbs indicative of wet and dry habitats and (2) seeds originating from sites along the rivers Elbe and Rhine. We exposed seeds of 20 floodplain meadow species with different moisture requirements from five plant families to a water potential gradient ranging from 0 to -1.5MPa. While across species germination percentage and synchrony decreased, germination time increased at reduced water potentials. Germination of the species indicative of dry habitats decreased more strongly, was slower and less synchronous at reduced water potentials than that of species indicative of wet habitats. Seeds from sites along the rivers Elbe and Rhine did not differ in their germination characteristics. We propose that species of wet sites follow an all-or-nothing-strategy with fast and synchronous germination to maximize competitive advantages, betting on a high probability of moist conditions for establishment (optimists). In contrast, species from dry sites appear to follow a bet-hedging strategy with a moisture-sensing mechanism for unsuitable conditions (pessimists), resulting in a slower and less synchronous germination.


Biological Invasions | 2007

Population life-cycle and stand structure in dense and open stands of the introduced tall herb Heracleum mantegazzianum

Jörg Hüls; Annette Otte; R. Lutz Eckstein

Populations of the introduced Heracleum mantegazzianum consist of dense central stands, which gradually give way to open stands towards the margins. To analyse whether open stands are due to unsuitable conditions or represent the invading front for further spread, we studied life-cycle, population dynamics, stand structure and soil conditions of open and dense stands over two transition periods. Populations decreased during the first interval but increased after the extremely dry and warm summer of 2003 during the second interval. Open stands had shorter generation times, lower height, smaller proportions of small individuals and were less in equilibrium with the environment than dense stands. In open stands, growth to higher stages was most important, while in dense stands delayed development (self-loops) had a strong effect on population growth; stasis and fecundity contributed most to the difference in λ between stand types. By petiole extension H. mantegazzianum may raise its leaves just above the resident vegetation. Therefore, younger stages develop faster in open stands, whereas strong competition by conspecific adults leads to longer generation times and a higher proportion of small individuals in dense stands. Disturbance due to extreme climatic conditions in summer 2003 equalised population dynamics of both stand types. Life-cycle variation between stand types makes it difficult to infer simple management rules. However, our data suggest that small and/or open stands of H. mantegazzianum may eventually serve as initials for further spread after land-use changes, whereas dense stands are stable and may represent sources of propagules.


Alpine Botany | 2014

Snow cover consistently affects growth and reproduction of Empetrum hermaphroditum across latitudinal and local climatic gradients

Miriam J. Bienau; Dirk Hattermann; Michael Kröncke; Lena Kretz; Annette Otte; Wolf L. Eiserhardt; Ann Milbau; Bente J. Graae; Walter Durka; R. Lutz Eckstein

Arctic ecosystems face strong changes in snow conditions due to global warming. In contrast to habitat specialists, species occupying a wide range of microhabitats under different snow conditions may better cope with such changes. We studied how growth and reproduction of the dominant dwarf shrub Empetrum hermaphroditum varied among three habitat types differing in winter snow depth and summer irradiation, and whether the observed patterns were consistent along a local climatic gradient (sub-continental vs. sub-oceanic climates) and along a latitudinal gradient (northern Sweden vs. central Norway). Habitat type explained most of the variation in growth and reproduction. Shoots from shallow snow cover and high summer irradiation habitats had higher numbers of flowers and fruits, lower ramet heights, shorter shoot segments, lower numbers of lateral shoots and total biomass but higher leaf density and higher relative leaf allocation than shoots from habitats with higher snow depth and lower summer irradiation. In addition, biomass, leaf allocation and leaf life expectancy were strongly affected by latitude, whereas local climate had strong effects on seed number and seed mass. Empetrum showed high phenotypic trait variation, with a consistent match between local habitat conditions and its growth and reproduction. Although study areas varied strongly with respect to latitude and local climatic conditions, response patterns of growth and reproduction to habitats with different environmental conditions were consistent. Large elasticity of traits suggests that Empetrum may have the potential to cope with changing snow conditions expected in the course of climate change.


PLOS ONE | 2015

Effects of reduced summer precipitation on productivity and forage quality of floodplain meadows at the Elbe and the Rhine River.

Kristin Ludewig; Tobias W. Donath; Bianka Zelle; R. Lutz Eckstein; Eva Mosner; Annette Otte; Kai Jensen

Background Floodplain meadows along rivers are semi-natural habitats and depend on regular land use. When used non-intensively, they offer suitable habitats for many plant species including rare ones. Floodplains are hydrologically dynamic ecosystems with both periods of flooding and of dry conditions. In German floodplains, dry periods may increase due to reduced summer precipitation as projected by climate change scenarios. Against this background, the question arises, how the forage quantity and quality of these meadows might change in future. Methods We report results of two field trials that investigated effects of experimentally reduced summer precipitation on hay quantity and quality of floodplain meadows at the Rhine River (2011-2012) and at two Elbe tributaries (2009-2011). We measured annual yield, the amount of hay biomass, and contents of crude protein, crude fibre, energy, fructan, nitrogen, phosphorus, and potassium. Results The annual yield decreased under precipitation reduction at the Rhine River. This was due to reduced productivity in the second cut hay at the Rhine River in which, interestingly, the contents of nitrogen and crude protein increased. The first cut at the Rhine River was unaffected by the treatments. At the Elbe tributaries, the annual yield and the hay quantity and quality of both cuts were only marginally affected by the treatments. Conclusion We conclude that the yield of floodplain meadows may become less reliable in future since the annual yield decreased under precipitation reduction at the Rhine River. However, the first and agriculturally more important cut was almost unaffected by the precipitation reduction, which is probably due to sufficient soil moisture from winter/spring. As long as future water levels of the rivers will not decrease during spring, at least the use of the hay from the first cut of floodplain meadows appears reliable under climate change.

Collaboration


Dive into the R. Lutz Eckstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter Durka

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bente J. Graae

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann Milbau

Research Institute for Nature and Forest

View shared research outputs
Researchain Logo
Decentralizing Knowledge