Tobias Weidner
Technische Hochschule Mittelhessen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tobias Weidner.
Microbial Cell Factories | 2017
Christine Schreiber; Hagen Müller; Oliver Birrenbach; Moritz Klein; Doreen Heerd; Tobias Weidner; Denise Salzig; Peter Czermak
BackgroundAntimicrobial peptides (AMPs) are promising candidates for the development of novel antibiotics, but it is difficult to produce sufficient quantities for preclinical and clinical studies due to their toxicity towards microbial expression hosts. To avoid laborious trial-and-error testing for the identification of suitable expression constructs, we have developed a small-scale expression screening platform based on a combinatorial plasmid library.ResultsThe combinatorial library is based on the Golden Gate cloning system. In each reaction, six donor plasmids (each containing one component: a promoter, fusion partner 1, fusion partner 2, protease cleavage site, gene of interest, or transcriptional terminator) were combined with one acceptor plasmid to yield the final expression construct. As a proof of concept, screening was carried out in Escherichia coli and Pichia pastoris to study the expression of three different model AMPs with challenging characteristics, such as host toxicity or multiple disulfide bonds. The corresponding genes were successfully cloned in 27 E. coli and 18 P. pastoris expression plasmids, each in a one-step Golden Gate reaction. After transformation, small-scale expression screening in microtiter plates was followed by AMP quantification using a His6 tag-specific ELISA. Depending on the plasmid features and the expression host, the protein yields differed by more than an order of magnitude. This allowed the identification of high producers suitable for larger-scale protein expression.ConclusionsThe optimization of recombinant protein production is best achieved from first principles by initially optimizing the genetic construct. The unrestricted combination of multiple plasmid features yields a comprehensive library of expression strains that can be screened for optimal productivity. The availability of such a platform could benefit all laboratories working in the field of recombinant protein expression.
Archive | 2017
Jan Zitzmann; Gundula Sprick; Tobias Weidner; Christine Schreiber; Peter Czermak
Insect cells can be used for the efficient production of heterologous proteins. The baculovirus expression vector system (BEVS) in Spodoptera frugiperda cells and the stable transformation of Drosophila melanogaster S2 cells are widely used for this purpose. Whereas BEVS is a transient expression system for rapid protein production, stable D. melanogaster cell lines are compatible with more complex processes modes. This chapter describes the setup of both systems, including steps for the generation of expression vectors and comprehensive optimization approaches. The genetic elements available in each system are described, as well as the use of different cloning and transfection methods and advanced process monitoring to achieve robust protein expression in larger-scale bioreactors.
Archive | 2017
Christiane Elseberg; Jasmin Leber; Tobias Weidner; PeterCzermak
In the field of cell therapy, allogenic human mesenchymal stromal cells (hMSCs) are often used in clinical trials, creating a demand for cell mass production using efficient dynamic bioreactor systems. As an advanced therapy medicinal product (ATMP), such cells should meet certain special requirements, including product specifications requiring a production process compatible with good manufacturing practice (GMP). The development of processes in which the cells are the product therefore remains a significant challenge. This chapter describes the requirements at different steps in the upstream and downstream phases of such dynamic processes. Potential solutions are presented and future prospects are discussed, including the selection of media and carriers for the strictly adherent growing cells, allowing efficient cell adhesion and detachment. Strategies for dynamic cultivation in bioreactors are described in detail for fixed‐bed and stirred‐tank reactors based on GMP requirements and the integration of process analytical technology (PAT). Following cell harvest, separation and purification, the formulation and storage of the product are also described. Finally, the chapter covers important cell quality characteristics necessary for the approval of ATMPs.
Sensors | 2018
Jan Zitzmann; Tobias Weidner; Gerrit Eichner; Denise Salzig; Peter Czermak
The production of recombinant proteins in bioreactors requires real-time process monitoring and control to increase process efficiency and to meet the requirements for a comprehensive audit trail. The combination of optical near-infrared turbidity sensors and dielectric spectroscopy provides diverse system information because different measurement principles are exploited. We used this combination of techniques to monitor and control the growth and protein production of stably transformed Drosophila melanogaster S2 cells expressing antimicrobial proteins. The in situ monitoring system was suitable in batch, fed-batch and perfusion modes, and was particularly useful for the online determination of cell concentration, specific growth rate (µ) and cell viability. These data were used to pinpoint the optimal timing of the key transitional events (induction and harvest) during batch and fed-batch cultivation, achieving a total protein yield of ~25 mg at the 1-L scale. During cultivation in perfusion mode, the OD880 signal was used to control the bleed line in order to maintain a constant cell concentration of 5 × 107 cells/mL, thus establishing a turbidostat/permittistat culture. With this setup, a five-fold increase in productivity was achieved and 130 mg of protein was recovered after 2 days of induced perfusion. Our results demonstrate that both sensors are suitable for advanced monitoring and integration into online control strategies.
Biotechnology Progress | 2017
Tanja A. Grein; Felix Schwebel; Marco Kress; Daniel Loewe; Hauke Dieken; Denise Salzig; Tobias Weidner; Peter Czermak
Measles virus (MV) has a natural affinity for cancer cells and oncolytic MV preparations have therefore been investigated in several clinical trials as a potential treatment for cancer. The main bottleneck in the administration of oncolytic MV to cancer patients is the production process, because very large doses of virus particles are required for each treatment. Here, we investigated the productivity of different host cells and found that a high infection efficiency did not necessarily result in high virus yields because virus release is also dependent on the host cell. As well as producing large numbers of active MV particles, host cells must perform well in dynamic cultivation systems. In screening experiments, the highest productivity was achieved by Vero and BJAB cells, but only the Vero cells maintained their high virus productivity when transferred to a stirred tank reactor. We used dielectric spectroscopy as an online monitoring system to control the infection and harvest times, which are known to be critical process parameters. The precise control of these parameters allowed us to achieve higher virus titers with Vero cells in a stirred tank reactor than in a static cultivation system based on T‐flasks, with maximum titers of up to 1011 TCID50 ml−1.
Stem Cells International | 2018
Florian Petry; Tobias Weidner; Peter Czermak; Denise Salzig
Diabetes is a prominent health problem caused by the failure of pancreatic beta cells. One therapeutic approach is the transplantation of functional beta cells, but it is difficult to generate sufficient beta cells in vitro and to ensure these cells remain viable at the transplantation site. Beta cells suffer from hypoxia, undergo apoptosis, or are attacked by the host immune system. Human mesenchymal stem/stromal cells (hMSCs) can improve the functionality and survival of beta cells in vivo and in vitro due to direct cell contact or the secretion of trophic factors. Current cocultivation concepts with beta cells are simple and cannot exploit the favorable properties of hMSCs. Beta cells need a three-dimensional (3D) environment to function correctly, and the cocultivation setup is therefore more complex. This review discusses 3D cultivation forms (aggregates, capsules, and carriers) for hMSCs and beta cells and strategies for large-scale cultivation. We have determined process parameters that must be balanced and considered for the cocultivation of hMSCs and beta cells, and we present several bioreactor setups that are suitable for such an innovative cocultivation approach. Bioprocess engineering of the cocultivation processes is necessary to achieve successful beta cell therapy.
Biotechnology and Bioengineering | 2018
Tanja A. Grein; Daniel Loewe; Hauke Dieken; Denise Salzig; Tobias Weidner; Peter Czermak
Oncolytic viruses offer new hope to millions of patients with incurable cancer. One promising class of oncolytic viruses is Measles virus, but its broad administration to cancer patients is currently hampered by the inability to produce the large amounts of virus needed for treatment (1010–1012 virus particles per dose). Measles virus is unstable, leading to very low virus titers during production. The time of infection and time of harvest are therefore critical parameters in a Measles virus production process, and their optimization requires an accurate online monitoring system. We integrated a probe based on dielectric spectroscopy (DS) into a stirred tank reactor to characterize the Measles virus production process in adherent growing Vero cells. We found that DS could be used to monitor cell adhesion on the microcarrier and that the optimal virus harvest time correlated with the global maximum permittivity signal. In 16 independent bioreactor runs, the maximum Measles virus titer was achieved approximately 40 hr after the permittivity maximum. Compared to an uncontrolled Measles virus production process, the integration of DS increased the maximum virus concentration by more than three orders of magnitude. This was sufficient to achieve an active Measles virus concentration of > 1010 TCID50 ml−1.
Biotechnology Reports | 2018
Jan Zitzmann; Christine Schreiber; Joel Eichmann; Roberto Otmar Bilz; Denise Salzig; Tobias Weidner; Peter Czermak
Highlights • Easy preparation of monoclonal insect cell lines in a serum free environment.• Protocol uses co-cultivation with untreated feeder cells and antibiotic selection.• Monoclonality allows efficient and stable recombinant protein expression.• Expression of a fluorescent reporter and two antimicrobial peptides.• Typically sixfold to tenfold increase in cell-specific productivity.
Zeitschrift für Naturforschung C | 2017
Tobias Weidner; Damir Druzinec; Martina Mühlmann; Rainer Buchholz; Peter Czermak
Abstract Insect-based expression platforms such as the baculovirus expression vector system (BEVS) are widely used for the laboratory- and industrial-scale production of recombinant proteins. Thereby, major drawbacks to gain high-quality proteins are the lytic infection cycle and the shear sensitivity of infected insect cells due to turbulence and aeration. Smaller bubbles were formerly assumed to be more harmful than larger ones, but we found that cell damage is also dependent on the concentration of protective agents such as Pluronic®. At the appropriate concentration, Pluronic forms a layer around air bubbles and hinders the attachment of cells, thus limiting the damage. In this context, we used microaeration to vary bubble sizes and confirmed that size is not the most important factor, but the total gas surface area in the reactor is. If the surface area exceeds a certain threshold, the concentration of Pluronic is no longer sufficient for cell protection. To investigate the significance of shear forces, a second study was carried out in which infected insect cells were cultivated in a hollow fiber module to protect them from shear forces. Both model studies revealed important aspects of the design and scale-up of BEVS processes for the production of recombinant proteins.
Archive | 2017
Tanja A. Grein; Tobias Weidner; Peter Czermak
The industrial-scale manufacturing of viruses or virus-like particles in cell culture is necessary for gene therapy and the treatment of cancer with oncolytic viruses. Complex multistep processes are required in both cases, but the low virus titers in batch cultures and the temperature sensitivity of the virus particles limit the production scale. To meet commercial and regulatory requirements, each process must be scalable and reproducible and must yield high virus titers. These requirements are met by establishing a cell culture process that matches the properties of the virus/host-cell system and by using serum-free cell culture medium. This chapter focuses on two case studies to consider the different aspects of process design, such as the reactor configuration and operational mode: the continuous production of retroviral pseudotype vectors in a retroviral packaging cell line and the production of oncolytic measles virus vectors for cancer therapy.