Toby R. Ault
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Toby R. Ault.
Science Advances | 2015
Benjamin I. Cook; Toby R. Ault; Jason E. Smerdon
Evidence suggests that Western North America will be drier at the end of the 21st century than any period of the last 1000 years. In the Southwest and Central Plains of Western North America, climate change is expected to increase drought severity in the coming decades. These regions nevertheless experienced extended Medieval-era droughts that were more persistent than any historical event, providing crucial targets in the paleoclimate record for benchmarking the severity of future drought risks. We use an empirical drought reconstruction and three soil moisture metrics from 17 state-of-the-art general circulation models to show that these models project significantly drier conditions in the later half of the 21st century compared to the 20th century and earlier paleoclimatic intervals. This desiccation is consistent across most of the models and moisture balance variables, indicating a coherent and robust drying response to warming despite the diversity of models and metrics analyzed. Notably, future drought risk will likely exceed even the driest centuries of the Medieval Climate Anomaly (1100–1300 CE) in both moderate (RCP 4.5) and high (RCP 8.5) future emissions scenarios, leading to unprecedented drought conditions during the last millennium.
Nature | 2012
Elizabeth M. Wolkovich; Benjamin I. Cook; Jenica M. Allen; Theresa M. Crimmins; Julio L. Betancourt; Steven E. Travers; Stephanie Pau; Jim Regetz; T. J. Davies; Nathan J. B. Kraft; Toby R. Ault; Kjell Bolmgren; Susan J. Mazer; Gregory J. McCabe; Brian J. McGill; C. Parmesan; Nicolas Salamin; Mark D. Schwartz; Elsa E. Cleland
Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.
Journal of Climate | 2016
Matthew Newman; Michael A. Alexander; Toby R. Ault; Kim M. Cobb; Clara Deser; Emanuele Di Lorenzo; Nathan J. Mantua; Arthur J. Miller; Shoshiro Minobe; Hisashi Nakamura; Niklas Schneider; Daniel J. Vimont; Adam S. Phillips; James D. Scott; Catherine A. Smith
AbstractThe Pacific decadal oscillation (PDO), the dominant year-round pattern of monthly North Pacific sea surface temperature (SST) variability, is an important target of ongoing research within the meteorological and climate dynamics communities and is central to the work of many geologists, ecologists, natural resource managers, and social scientists. Research over the last 15 years has led to an emerging consensus: the PDO is not a single phenomenon, but is instead the result of a combination of different physical processes, including both remote tropical forcing and local North Pacific atmosphere–ocean interactions, which operate on different time scales to drive similar PDO-like SST anomaly patterns. How these processes combine to generate the observed PDO evolution, including apparent regime shifts, is shown using simple autoregressive models of increasing spatial complexity. Simulations of recent climate in coupled GCMs are able to capture many aspects of the PDO, but do so based on a balance of ...
Journal of Climate | 2014
Toby R. Ault; Julia E. Cole; Jonathan T. Overpeck; Gregory T. Pederson; David M. Meko
Projected changes in global rainfall patterns will likely alter water supplies and ecosystems in semiarid regions during the coming century. Instrumental and paleoclimate data indicate that natural hydroclimate fluctuations tend to be more energetic at low (multidecadal to multicentury) than at high (interannual) frequencies. State-of-the-art global climate models do not capture this characteristic of hydroclimate variability, suggesting that the models underestimate the risk of future persistent droughts. Methods are developed here for assessing the risk of such events in the coming century using climate model projections as well as observational (paleoclimate) information. Where instrumental and paleoclimate data are reliable, these methods may provide a more complete view of prolonged drought risk. In the U.S. Southwest, for instance, state-of-the-art climate model projections suggest the risk of a decade-scale megadrought in the coming century is less than 50%; the analysis hereinsuggests that the risk is at least 80%, and may be higherthan 90% in certain areas. The likelihood of longer-lived events (.35yr) is between 20% and 50%, and the risk of an unprecedented 50-yr megadrought is nonnegligible under the most severe warming scenario (5%‐10%). These findings are important to consider as adaptation and mitigation strategies are developed to cope with regional impacts of climate change, where population growth is high and multidecadal megadrought—worse thananythingseenduringthelast2000years—wouldposeunprecedentedchallengestowaterresourcesinthe region.
Journal of Climate | 2011
Gregory T. Pederson; Stephen T. Gray; Toby R. Ault; Wendy Marsh; Daniel B. Fagre; Andrew G. Bunn; Connie A. Woodhouse; Lisa J. Graumlich
Abstract The northern Rocky Mountains (NRMs) are a critical headwaters region with the majority of water resources originating from mountain snowpack. Observations showing declines in western U.S. snowpack have implications for water resources and biophysical processes in high-mountain environments. This study investigates oceanic and atmospheric controls underlying changes in timing, variability, and trends documented across the entire hydroclimatic-monitoring system within critical NRM watersheds. Analyses were conducted using records from 25 snow telemetry (SNOTEL) stations, 148 1 April snow course records, stream gauge records from 14 relatively unimpaired rivers, and 37 valley meteorological stations. Over the past four decades, midelevation SNOTEL records show a tendency toward decreased snowpack with peak snow water equivalent (SWE) arriving and melting out earlier. Temperature records show significant seasonal and annual decreases in the number of frost days (days ≤0°C) and changes in spring minim...
Journal of Ecology | 2013
T. Jonathan Davies; Elizabeth M. Wolkovich; Nathan J. B. Kraft; Nicolas Salamin; Jenica M. Allen; Toby R. Ault; Julio L. Betancourt; Kjell Bolmgren; Elsa E. Cleland; Benjamin I. Cook; Theresa M. Crimmins; Susan J. Mazer; Gregory J. McCabe; Stephanie Pau; Jim Regetz; Mark D. Schwartz; Steven E. Travers
Summary 1. Phenological events – defined points in the life cycle of a plant or animal – have been regarded as highly plastic traits, reflecting flexible responses to various environmental cues. 2. The ability of a species to track, via shifts in phenological events, the abiotic environment through time might dictate its vulnerability to future climate change. Understanding the predictors and drivers of phenological change is therefore critical. 3. Here, we evaluated evidence for phylogenetic conservatism – the tendency for closely related species to share similar ecological and biological attributes – in phenological traits across flowering plants. We aggregated published and unpublished data on timing of first flower and first leaf, encompassing ~4000 species at 23 sites across the Northern Hemisphere. We reconstructed the phylogeny for the set of included species, first, using the software program Phylomatic, and second, from DNA data. We then quantified phylogenetic conservatism in plant phenology within and across sites. 4. We show that more closely related species tend to flower and leaf at similar times. By contrasting mean flowering times within and across sites, however, we illustrate that it is not the time of year that is conserved, but rather the phenological responses to a common set of abiotic cues. 5. Our findings suggest that species cannot be treated as statistically independent when modelling phenological responses. 6. Synthesis. Closely related species tend to resemble each other in the timing of their life-history events, a likely product of evolutionarily conserved responses to environmental cues. The search for the underlying drivers of phenology must therefore account for species’ shared evolutionary histories.
Journal of Climate | 2013
Toby R. Ault; Julia E. Cole; Jonathan T. Overpeck; Gregory T. Pederson; Scott St. George; Bette L. Otto-Bliesner; Connie A. Woodhouse; Clara Deser
AbstractThe distribution of climatic variance across the frequency spectrum has substantial importance for anticipating how climate will evolve in the future. Here power spectra and power laws (β) are estimated from instrumental, proxy, and climate model data to characterize the hydroclimate continuum in western North America (WNA). The significance of the estimates of spectral densities and β are tested against the null hypothesis that they reflect solely the effects of local (nonclimate) sources of autocorrelation at the monthly time scale. Although tree-ring-based hydroclimate reconstructions are generally consistent with this null hypothesis, values of β calculated from long moisture-sensitive chronologies (as opposed to reconstructions) and other types of hydroclimate proxies exceed null expectations. Therefore it may be argued that there is more low-frequency variability in hydroclimate than monthly autocorrelation alone can generate. Coupled model results archived as part of phase 5 of the Coupled ...
Eos, Transactions American Geophysical Union | 2013
Toby R. Ault; Geoffrey M. Henebry; K.M. de Beurs; Mark D. Schwartz; Julio L. Betancourt; David J. P. Moore
Phenology—the study of recurring plant and animal life cycle stages, especially their timing and relationships with weather and climate—is becoming an essential tool for documenting, communicating, and anticipating the consequences of climate variability and change. For example, March 2012 broke numerous records for warm temperatures and early flowering in the United States [Karl et al., 2012; Elwood et al., 2013]. Many regions experienced a “false spring,” a period of weather in late winter or early spring sufficiently mild and long to bring vegetation out of dormancy prematurely, rendering it vulnerable to late frost and drought.
Ecosystems | 2012
Benjamin I. Cook; Elizabeth M. Wolkovich; T. Jonathan Davies; Toby R. Ault; Julio L. Betancourt; Jenica M. Allen; Kjell Bolmgren; Elsa E. Cleland; Theresa M. Crimmins; Nathan J. B. Kraft; Lesley T. Lancaster; Susan J. Mazer; Gregory J. McCabe; Brian J. McGill; Camille Parmesan; Stephanie Pau; James Regetz; Nicolas Salamin; Mark D. Schwartz; Steven E. Travers
Disparate ecological datasets are often organized into databases post hoc and then analyzed and interpreted in ways that may diverge from the purposes of the original data collections. Few studies, however, have attempted to quantify how biases inherent in these data (for example, species richness, replication, climate) affect their suitability for addressing broad scientific questions, especially in under-represented systems (for example, deserts, tropical forests) and wild communities. Here, we quantitatively compare the sensitivity of species first flowering and leafing dates to spring warmth in two phenological databases from the Northern Hemisphere. One—PEP725—has high replication within and across sites, but has low species diversity and spans a limited climate gradient. The other—NECTAR—includes many more species and a wider range of climates, but has fewer sites and low replication of species across sites. PEP725, despite low species diversity and relatively low seasonality, accurately captures the magnitude and seasonality of warming responses at climatically similar NECTAR sites, with most species showing earlier phenological events in response to warming. In NECTAR, the prevalence of temperature responders significantly declines with increasing mean annual temperature, a pattern that cannot be detected across the limited climate gradient spanned by the PEP725 flowering and leafing data. Our results showcase broad areas of agreement between the two databases, despite significant differences in species richness and geographic coverage, while also noting areas where including data across broader climate gradients may provide added value. Such comparisons help to identify gaps in our observations and knowledge base that can be addressed by ongoing monitoring and research efforts. Resolving these issues will be critical for improving predictions in understudied and under-sampled systems outside of the temperature seasonal mid-latitudes.
Journal of Climate | 2011
Toby R. Ault; Alison Macalady; Gregory T. Pederson; Julio L. Betancourt; Mark D. Schwartz
Spatial and temporal patterns of variability in spring onset are identified across western North America using a spring index (SI) model based on weather station minimum and maximum temperatures (Tmin and Tmax, respectively). Principal componentanalysisshowsthattwosignificantand independent patternsexplain roughly half of the total variance in the timing of spring onset from 1920 to 2005. However, these patterns of spring onset do not appear to be linear responses to the primary modes of variability in the Northern Hemisphere: the Pacific‐North American pattern (PNA) and the northern annular mode (NAM). Instead, over the period when reanalysis data and the spring index model overlap (1950‐2005), the patterns of spring onset are local responses to the state of both the PNA and NAM, which together modulate the onset date of spring by 10‐20 days on interannual time scales. They do so by controlling the number and intensity of warm days. There is also a regionwide trend in spring advancement of about 21.5 days decade 21 from 1950 to 2005. Trends in the NAM and PNA can only explain about one-third (20.5 day decade 21 ) of this trend.