Todd Bradley
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Todd Bradley.
Cell | 2016
Mattia Bonsignori; Tongqing Zhou; Zizhang Sheng; Lei Chen; Feng Gao; M. Gordon Joyce; Gabriel Ozorowski; Gwo-Yu Chuang; Chaim A. Schramm; Kevin Wiehe; S. Munir Alam; Todd Bradley; Morgan A. Gladden; Kwan-Ki Hwang; Sheelah Iyengar; Amit Kumar; Xiaozhi Lu; Kan Luo; Michael C. Mangiapani; Robert Parks; Hongshuo Song; Priyamvada Acharya; Robert T. Bailer; Allen Cao; Aliaksandr Druz; Ivelin S. Georgiev; Young Do Kwon; Mark K. Louder; Baoshan Zhang; Anqi Zheng
Antibodies with ontogenies from VH1-2 or VH1-46-germline genes dominate the broadly neutralizing response against the CD4-binding site (CD4bs) on HIV-1. Here, we define with longitudinal sampling from time-of-infection the development of a VH1-46-derived antibody lineage that matured to neutralize 90% of HIV-1 isolates. Structures of lineage antibodies CH235 (week 41 from time-of-infection, 18% breadth), CH235.9 (week 152, 77%), and CH235.12 (week 323, 90%) demonstrated the maturing epitope to focus on the conformationally invariant portion of the CD4bs. Similarities between CH235 lineage and five unrelated CD4bs lineages in epitope focusing, length-of-time to develop breadth, and extraordinary level of somatic hypermutation suggested commonalities in maturation among all CD4bs antibodies. Fortunately, the required CH235-lineage hypermutation appeared substantially guided by the intrinsic mutability of the VH1-46 gene, which closely resembled VH1-2. We integrated our CH235-lineage findings with a second broadly neutralizing lineage and HIV-1 co-evolution to suggest a vaccination strategy for inducing both lineages.
Genes & Development | 2013
J. M. Taliaferro; Julie L. Aspden; Todd Bradley; Dhruv Marwha; Marco Blanchette; Donald C. Rio
Transcription and pre-mRNA alternative splicing are highly regulated processes that play major roles in modulating eukaryotic gene expression. It is increasingly apparent that other pathways of RNA metabolism, including small RNA biogenesis, can regulate these processes. However, a direct link between alternative pre-mRNA splicing and small RNA pathways has remained elusive. Here we show that the small RNA pathway protein Argonaute-2 (Ago-2) regulates alternative pre-mRNA splicing patterns of specific transcripts in the Drosophila nucleus using genome-wide methods in conjunction with RNAi in cell culture and Ago-2 deletion or catalytic site mutations in Drosophila adults. Moreover, we show that nuclear Argonaute-2 binds to specific chromatin sites near gene promoters and negatively regulates the transcription of the Ago-2-associated target genes. These transcriptional target genes are also bound by Polycomb group (PcG) transcriptional repressor proteins and change during development, implying that Ago-2 may regulate Drosophila development. Importantly, both of these activities were independent of the catalytic activity of Ago-2, suggesting new roles for Ago-2 in the nucleus. Finally, we determined the nuclear RNA-binding profile of Ago-2, found it bound to several splicing target transcripts, and identified a G-rich RNA-binding site for Ago-2 that was enriched in these transcripts. These results suggest two new nuclear roles for Ago-2: one in pre-mRNA splicing and one in transcriptional repression.
RNA | 2015
Todd Bradley; Malcolm Cook; Marco Blanchette
SR proteins are a well-conserved class of RNA-binding proteins that are essential for regulation of splice-site selection, and have also been implicated as key regulators during other stages of RNA metabolism. For many SR proteins, the complexity of the RNA targets and specificity of RNA-binding location are poorly understood. It is also unclear if general rules governing SR protein alternative pre-mRNA splicing (AS) regulation uncovered for individual SR proteins on few model genes, apply to the activity of all SR proteins on endogenous targets. Using RNA-seq, we characterize the global AS regulation of the eight Drosophila SR protein family members. We find that a majority of AS events are regulated by multiple SR proteins, and that all SR proteins can promote exon inclusion, but also exon skipping. Most coregulated targets exhibit cooperative regulation, but some AS events are antagonistically regulated. Additionally, we found that SR protein levels can affect alternative promoter choices and polyadenylation site selection, as well as overall transcript levels. Cross-linking and immunoprecipitation coupled with high-throughput sequencing (iCLIP-seq), reveals that SR proteins bind a distinct and functionally diverse class of RNAs, which includes several classes of noncoding RNAs, uncovering possible novel functions of the SR protein family. Finally, we find that SR proteins exhibit positional RNA binding around regulated AS events. Therefore, regulation of AS by the SR proteins is the result of combinatorial regulation by multiple SR protein family members on most endogenous targets, and SR proteins have a broader role in integrating multiple layers of gene expression regulation.
Science Translational Medicine | 2016
Ruijun Zhang; Laurent Verkoczy; Kevin Wiehe; S. Munir Alam; Nathan I. Nicely; Sampa Santra; Todd Bradley; Charles W. Pemble; Jinsong Zhang; Feng Gao; David C. Montefiori; Hilary Bouton-Verville; Garnett Kelsoe; Kevin Larimore; Phillip D. Greenberg; Robert Parks; Andrew Foulger; Jessica Peel; Kan Luo; Xiaozhi Lu; Ashley M. Trama; Nathan Vandergrift; Georgia D. Tomaras; Thomas B. Kepler; M. Anthony Moody; Hua-Xin Liao; Barton F. Haynes
Immune tolerance mechanisms limit gp41 neutralizing antibody lineage maturation to broadly neutralizing antibodies. An immune block to HIV vaccines Because HIV is a rapidly mutating virus, a successful vaccine will need to elicit an immune response against a variety of HIV strains—broadly neutralizing antibodies (bnAbs). However, despite multiple promising targets, bnAb generation after HIV vaccination has remained elusive. Now, Zhang et al. report that bnAbs to one such target, gp41, are controlled by immune tolerance. In mouse and macaque, precursors to these antibodies are either deleted or do not attain sufficient affinity to neutralize virus. Therefore, a successful vaccine for HIV will need to overcome immune tolerance mechanisms. Development of an HIV vaccine is a global priority. A major roadblock to a vaccine is an inability to induce protective broadly neutralizing antibodies (bnAbs). HIV gp41 bnAbs have characteristics that predispose them to be controlled by tolerance. We used gp41 2F5 bnAb germline knock-in mice and macaques vaccinated with immunogens reactive with germline precursors to activate neutralizing antibodies. In germline knock-in mice, bnAb precursors were deleted, with remaining anergic B cells capable of being activated by germline-binding immunogens to make gp41-reactive immunoglobulin M (IgM). Immunized macaques made B cell clonal lineages targeted to the 2F5 bnAb epitope, but 2F5-like antibodies were either deleted or did not attain sufficient affinity for gp41-lipid complexes to achieve the neutralization potency of 2F5. Structural analysis of members of a vaccine-induced antibody lineage revealed that heavy chain complementarity-determining region 3 (HCDR3) hydrophobicity was important for neutralization. Thus, gp41 bnAbs are controlled by immune tolerance, requiring vaccination strategies to transiently circumvent tolerance controls.
Immunity | 2014
Kevin Wiehe; David Easterhoff; Kan Luo; Nathan I. Nicely; Todd Bradley; Frederick H. Jaeger; S. Moses Dennison; Ruijun Zhang; Krissey E. Lloyd; Christina Stolarchuk; Robert Parks; Laura L. Sutherland; Richard M. Scearce; Lynn Morris; Jaranit Kaewkungwal; Sorachai Nitayaphan; Punnee Pitisuttithum; Supachai Rerks-Ngarm; Faruk Sinangil; Sanjay Phogat; Nelson L. Michael; Jerome H. Kim; Garnett Kelsoe; David C. Montefiori; Georgia D. Tomaras; Mattia Bonsignori; Sampa Santra; Thomas B. Kepler; S. Munir Alam; M. Anthony Moody
In HIV-1, the ability to mount antibody responses to conserved, neutralizing epitopes is critical for protection. Here we have studied the light chain usage of human and rhesus macaque antibodies targeted to a dominant region of the HIV-1 envelope second variable (V2) region involving lysine (K) 169, the site of immune pressure in the RV144 vaccine efficacy trial. We found that humans and rhesus macaques used orthologous lambda variable gene segments encoding a glutamic acid-aspartic acid (ED) motif for K169 recognition. Structure determination of an unmutated ancestor antibody demonstrated that the V2 binding site was preconfigured for ED motif-mediated recognition prior to maturation. Thus, light chain usage for recognition of the site of immune pressure in the RV144 trial is highly conserved across species. These data indicate that the HIV-1 K169-recognizing ED motif has persisted over the diversification between rhesus macaques and humans, suggesting an evolutionary advantage of this antibody recognition mode.
Cell Reports | 2016
Todd Bradley; Daniela Fera; Jinal N. Bhiman; Leila Eslamizar; Xiaozhi Lu; Kara Anasti; Ruijung Zhang; Laura L. Sutherland; Richard M. Scearce; Cindy M. Bowman; Christina Stolarchuk; Krissey E. Lloyd; Robert Parks; Amanda Eaton; Andrew Foulger; Xiaoyan Nie; Salim Safurdeen. Abdool Karim; Susan W. Barnett; Garnett Kelsoe; Thomas B. Kepler; S. Munir Alam; David C. Montefiori; M. Anthony Moody; Hua-Xin Liao; Lynn Morris; Sampa Santra; Stephen C. Harrison; Barton F. Haynes
Antibodies that neutralize autologous transmitted/founder (TF) HIV occur in most HIV-infected individuals and can evolve to neutralization breadth. Autologous neutralizing antibodies (nAbs) against neutralization-resistant (Tier-2) viruses are rarely induced by vaccination. Whereas broadly neutralizing antibody (bnAb)-HIV-Envelope structures have been defined, the structures of autologous nAbs have not. Here, we show that immunization with TF mutant Envs gp140 oligomers induced high-titer, V5-dependent plasma neutralization for a Tier-2 autologous TF evolved mutant virus. Structural analysis of autologous nAb DH427 revealed binding to V5, demonstrating the source of narrow nAb specificity and explaining the failure to acquire breadth. Thus, oligomeric TF Envs can elicit autologous nAbs to Tier-2 HIVs, but induction of bnAbs will require targeting of precursors of B cell lineages that can mature to heterologous neutralization.
Science Translational Medicine | 2017
Mattia Bonsignori; Edward F. Kreider; Daniela Fera; R. Ryan Meyerhoff; Todd Bradley; Kevin Wiehe; S. Munir Alam; Baptiste Aussedat; William E. Walkowicz; Kwan-Ki Hwang; Kevin O. Saunders; Ruijun Zhang; Morgan A. Gladden; Anthony Monroe; Amit Kumar; Shi-Mao Xia; Melissa Cooper; Mark K. Louder; Krisha McKee; Robert T. Bailer; Brendan W. Pier; Claudia A. Jette; Garnett Kelsoe; Wilton B. Williams; Lynn Morris; John C. Kappes; Kshitij Wagh; Gift Kamanga; Myron S. Cohen; Peter Hraber
Identification of maturation stages of V3-glycan neutralizing antibodies explains the long duration required for their development. Guiding anti-glycan antibodies Although it typically evades the immune system, HIV does have sites of vulnerability that can be targeted in vaccine design. One such site is a glycan near the V3 loop of the envelope protein, but antibodies recognizing this epitope are often not detected in people infected with HIV. Alam et al. designed a synthetic glycopeptide that can identify B cells targeting this epitope and also used it to immunize macaques. Bonsignori et al. used this synthetic glycopeptide and other baits to study the V3-glycan antibody responses of an HIV-infected individual that developed broadly neutralizing antibodies. They also examined viral evolution over time and found clues as to why these types of antibodies do not develop more often. These tools and findings could pave the way for a vaccine that protects against diverse strains of HIV. A preventive HIV-1 vaccine should induce HIV-1–specific broadly neutralizing antibodies (bnAbs). However, bnAbs generally require high levels of somatic hypermutation (SHM) to acquire breadth, and current vaccine strategies have not been successful in inducing bnAbs. Because bnAbs directed against a glycosylated site adjacent to the third variable loop (V3) of the HIV-1 envelope protein require limited SHM, the V3-glycan epitope is an attractive vaccine target. By studying the cooperation among multiple V3-glycan B cell lineages and their coevolution with autologous virus throughout 5 years of infection, we identify key events in the ontogeny of a V3-glycan bnAb. Two autologous neutralizing antibody lineages selected for virus escape mutations and consequently allowed initiation and affinity maturation of a V3-glycan bnAb lineage. The nucleotide substitution required to initiate the bnAb lineage occurred at a low-probability site for activation-induced cytidine deaminase activity. Cooperation of B cell lineages and an improbable mutation critical for bnAb activity defined the necessary events leading to breadth in this V3-glycan bnAb lineage. These findings may, in part, explain why initiation of V3-glycan bnAbs is rare, and suggest an immunization strategy for inducing similar V3-glycan bnAbs.
Nature Communications | 2017
Todd Bradley; Justin Pollara; Sampa Santra; Nathan Vandergrift; Srivamshi Pittala; Chris Bailey-Kellogg; Xiaoying Shen; Robert Parks; Derrick Goodman; Amanda Eaton; Harikrishnan Balachandran; Linh Mach; Kevin O. Saunders; Joshua A. Weiner; Richard M. Scearce; Laura L. Sutherland; Sanjay Phogat; Jim Tartaglia; Steven G. Reed; Shiu-Lok Hu; James F. Theis; Abraham Pinter; David C. Montefiori; Thomas B. Kepler; Kristina K. Peachman; Mangala Rao; Nelson L. Michael; Todd J. Suscovich; Galit Alter; Margaret E. Ackerman
The RV144 Thai trial HIV-1 vaccine of recombinant poxvirus (ALVAC) and recombinant HIV-1 gp120 subtype B/subtype E (B/E) proteins demonstrated 31% vaccine efficacy. Here we design an ALVAC/Pentavalent B/E/E/E/E vaccine to increase the diversity of gp120 motifs in the immunogen to elicit a broader antibody response and enhance protection. We find that immunization of rhesus macaques with the pentavalent vaccine results in protection of 55% of pentavalent-vaccine-immunized macaques from simian–human immunodeficiency virus (SHIV) challenge. Systems serology of the antibody responses identifies plasma antibody binding to HIV-infected cells, peak ADCC antibody titres, NK cell-mediated ADCC and antibody-mediated activation of MIP-1β in NK cells as the four immunological parameters that best predict decreased infection risk that are improved by the pentavalent vaccine. Thus inclusion of additional gp120 immunogens to a pox-prime/protein boost regimen can augment antibody responses and enhance protection from a SHIV challenge in rhesus macaques.
Science immunology | 2017
LaTonya D. Williams; Gilad Ofek; Sebastian Schätzle; Jonathan R. McDaniel; Xiaozhi Lu; Nathan I. Nicely; Liming Wu; Caleb S. Lougheed; Todd Bradley; Mark K. Louder; Krisha McKee; Robert T. Bailer; Sijy O’Dell; Ivelin S. Georgiev; Michael S. Seaman; Robert Parks; Dawn J. Marshall; Kara Anasti; Guang Yang; Xiaoyan Nie; Nancy Tumba; Kevin Wiehe; Kshitij Wagh; Bette T. Korber; Thomas B. Kepler; S. Munir Alam; Lynn Morris; Gift Kamanga; Myron S. Cohen; Mattia Bonsignori
Plasma is a source of broadly neutralizing antibodies for recombinant antibodies with enhanced potency and breadth. Engineering HIV immunity For rapidly mutating viruses such as HIV, antibodies that can neutralize more than one strain may have real potential as a therapeutic. Now, Williams et al. examine the ontogeny of broadly neutralizing antibodies (bnAbs) to the distal portion of the membrane-proximal external region (MPER) of HIV-1 gp41. They found similar clonal lineages of an MPER bnAb from both memory B cells and plasma, highlighting the viability of plasma as a source of bnAbs. These lineages shared an autoreactive unmutated common ancestor, suggesting that tolerance must be overcome for bnAb induction. The authors then engineered chimeric antibodies from the plasma and memory B cells that neutralized most HIV-1 strains. Induction of broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development. Antibody 10E8, reactive with the distal portion of the membrane-proximal external region (MPER) of HIV-1 gp41, is broadly neutralizing. However, the ontogeny of distal MPER antibodies and the relationship of memory B cell to plasma bnAbs are poorly understood. HIV-1–specific memory B cell flow sorting and proteomic identification of anti-MPER plasma antibodies from an HIV-1–infected individual were used to isolate broadly neutralizing distal MPER bnAbs of the same B cell clonal lineage. Structural analysis demonstrated that antibodies from memory B cells and plasma recognized the envelope gp41 bnAb epitope in a distinct orientation compared with other distal MPER bnAbs. The unmutated common ancestor of this distal MPER bnAb was autoreactive, suggesting lineage immune tolerance control. Construction of chimeric antibodies of memory B cell and plasma antibodies yielded a bnAb that potently neutralized most HIV-1 strains.
Journal of Virology | 2016
Navid Madani; Amy M. Princiotto; David Easterhoff; Todd Bradley; Kan Luo; Wilton B. Williams; Hua-Xin Liao; M. Anthony Moody; Ganesh E. Phad; Néstor Vázquez Bernat; Bruno Melillo; Sampa Santra; Amos B. Smith; Gunilla B. Karlsson Hedestam; Barton F. Haynes; Joseph Sodroski
ABSTRACT The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. IMPORTANCE Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus-sensitizing microbicide is combined with a vaccine.