Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd M. Bell is active.

Publication


Featured researches published by Todd M. Bell.


Journal of Virology | 2014

A lethal disease model for hantavirus pulmonary syndrome in immunosuppressed Syrian hamsters infected with Sin Nombre virus

Rebecca L. Brocato; Christopher D. Hammerbeck; Todd M. Bell; Jay Wells; Laurie A. Queen; Jay W. Hooper

ABSTRACT Sin Nombre virus (SNV) is a rodent-borne hantavirus that causes hantavirus pulmonary syndrome (HPS) predominantly in North America. SNV infection of immunocompetent hamsters results in an asymptomatic infection; the only lethal disease model for a pathogenic hantavirus is Andes virus (ANDV) infection of Syrian hamsters. Efforts to create a lethal SNV disease model in hamsters by repeatedly passaging virus through the hamster have demonstrated increased dissemination of the virus but no signs of disease. In this study, we demonstrate that immunosuppression of hamsters through the administration of a combination of dexamethasone and cyclophosphamide, followed by infection with SNV, results in a vascular leak syndrome that accurately mimics both HPS disease in humans and ANDV infection of hamsters. Immunosuppressed hamsters infected with SNV have a mean number of days to death of 13 and display clinical signs associated with HPS, including pulmonary edema. Viral antigen was widely detectable throughout the pulmonary endothelium. Histologic analysis of lung sections showed marked inflammation and edema within the alveolar septa of SNV-infected hamsters, results which are similar to what is exhibited by hamsters infected with ANDV. Importantly, SNV-specific neutralizing polyclonal antibody administered 5 days after SNV infection conferred significant protection against disease. This experiment not only demonstrated that the disease was caused by SNV, it also demonstrated the utility of this animal model for testing candidate medical countermeasures. This is the first report of lethal disease caused by SNV in an adult small-animal model.


Vaccine | 2013

Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation

Kathleen A. Cashman; Kate E. Broderick; Eric R. Wilkinson; Carl I. Shaia; Todd M. Bell; Amy C. Shurtleff; Kristin Spik; Catherine V. Badger; Mary C. Guttieri; Niranjan Y. Sardesai; Connie S. Schmaljohn

Lassa virus (LASV) causes a severe, often fatal, hemorrhagic fever endemic to West Africa. Presently, there are no FDA-licensed medical countermeasures for this disease. In a pilot study, we constructed a DNA vaccine (pLASV-GPC) that expressed the LASV glycoprotein precursor gene (GPC). This plasmid was used to vaccinate guinea pigs (GPs) using intramuscular electroporation as the delivery platform. Vaccinated GPs were protected from lethal infection (5/6) with LASV compared to the controls. However, vaccinated GPs experienced transient viremia after challenge, although lower than the mock-vaccinated controls. In a follow-on study, we developed a new device that allowed for both the vaccine and electroporation pulse to be delivered to the dermis. We also codon-optimized the GPC sequence of the vaccine to enhance expression in GPs. Together, these innovations resulted in enhanced efficacy of the vaccine. Unlike the pilot study where neutralizing titers were not detected until after virus challenge, modest neutralizing titers were detected in guinea pigs before challenge, with escalating titers detected after challenge. The vaccinated GPs were never ill and were not viremic at any timepoint. The combination of the codon-optimized vaccine and dermal electroporation delivery is a worthy candidate for further development.


Veterinary Pathology | 2015

Pathology of Experimental Machupo Virus Infection, Chicava Strain, in Cynomolgus Macaques (Macaca fascicularis) by Intramuscular and Aerosol Exposure:

Todd M. Bell; C. I. Shaia; T. E. Bunton; C. G. Robinson; E. R. Wilkinson; L. E. Hensley; K. A. Cashman

Machupo virus, the causative agent of Bolivian hemorrhagic fever (BHF), is a highly lethal viral hemorrhagic fever of which little is known and for which no Food and Drug Administration–approved vaccines or therapeutics are available. This study evaluated the cynomolgus macaque as an animal model using the Machupo virus, Chicava strain, via intramuscular and aerosol challenge. The incubation period was 6 to 10 days with initial signs of depression, anorexia, diarrhea, mild fever, and a petechial skin rash. These were often followed by neurologic signs and death within an average of 18 days. Complete blood counts revealed leukopenia as well as marked thrombocytopenia. Serum chemistry values identified a decrease in total protein, marked increases in alanine aminotransferase and aspartate aminotransferase, and moderate increases in alkaline phosphatase. Gross pathology findings included a macular rash extending across the axillary and inguinal regions beginning at approximately 10 days postexposure as well as enlarged lymph nodes and spleen, enlarged and friable liver, and sporadic hemorrhages along the gastrointestinal mucosa and serosa. Histologic lesions consisted of foci of degeneration and necrosis/apoptosis in the haired skin, liver, pancreas, adrenal glands, lymph nodes, tongue, esophagus, salivary glands, stomach, small intestine, and large intestine. Lymphohistiocytic interstitial pneumonia was also present. Inflammation within the central nervous system (nonsuppurative encephalitis) was histologically apparent approximately 16 days postexposure and was generally progressive. This study provides insight into the course of Machupo virus infection in cynomolgus macaques and supports the usefulness of cynomolgus macaques as a viable model of human Machupo virus infection.


PLOS ONE | 2015

Detailed Analysis of the African Green Monkey Model of Nipah Virus Disease

Sara C. Johnston; Thomas Briese; Todd M. Bell; William D. Pratt; Joshua D. Shamblin; Heather L. Esham; Ginger Donnelly; Joshua C. Johnson; Lisa E. Hensley; W. Ian Lipkin; Anna N. Honko

Henipaviruses are implicated in severe and frequently fatal pneumonia and encephalitis in humans. There are no approved vaccines or treatments available for human use, and testing of candidates requires the use of well-characterized animal models that mimic human disease. We performed a comprehensive and statistically-powered evaluation of the African green monkey model to define parameters critical to disease progression and the extent to which they correlate with human disease. African green monkeys were inoculated by the intratracheal route with 2.5×104 plaque forming units of the Malaysia strain of Nipah virus. Physiological data captured using telemetry implants and assessed in conjunction with clinical pathology were consistent with shock, and histopathology confirmed widespread tissue involvement associated with systemic vasculitis in animals that succumbed to acute disease. In addition, relapse encephalitis was identified in 100% of animals that survived beyond the acute disease phase. Our data suggest that disease progression in the African green monkey is comparable to the variable outcome of Nipah virus infection in humans.


Veterinary Pathology | 2016

Pathogenesis of Bolivian Hemorrhagic Fever in Guinea Pigs

Todd M. Bell; T. E. Bunton; C. I. Shaia; J. W. Raymond; S. P. Honnold; G. C. Donnelly; J. D. Shamblin; E. R. Wilkinson; K. A. Cashman

Machupo virus, the cause of Bolivian hemorrhagic fever, is a highly lethal viral hemorrhagic fever with no Food and Drug Administration–approved vaccines or therapeutics. This study evaluated the guinea pig as a model using the Machupo virus–Chicava strain administered via aerosol challenge. Guinea pigs (Cavia porcellus) were serially sampled to evaluate the temporal progression of infection, gross and histologic lesions, and sequential changes in serum chemistry and hematology. The incubation period was 5 to 12 days, and complete blood counts revealed leukopenia with lymphopenia and thrombocytopenia. Gross pathologic findings included congestion and hemorrhage of the gastrointestinal mucosa and serosa, noncollapsing lungs with fluid exudation, enlarged lymph nodes, and progressive pallor and friability of the liver. Histologic lesions consisted of foci of degeneration and cell death in the haired skin, liver, pancreas, adrenal glands, lymph nodes, tongue, esophagus, salivary glands, renal pelvis, small intestine, and large intestine. Lymphohistiocytic interstitial pneumonia was also present. Inflammation within the central nervous system, interpreted as nonsuppurative encephalitis, was histologically apparent approximately 16 days postexposure and was generally progressive. Macrophages in the tracheobronchial lymph node, on day 5 postexposure, were the first cells to demonstrate visible viral antigen. Viral antigen was detected throughout the lymphoid system by day 9 postexposure, followed by prominent spread within epithelial tissues and then brain. This study provides insight into the course of Machupo virus infection and supports the utility of guinea pigs as an additional animal model for vaccine and therapeutic development.


Human Vaccines & Immunotherapeutics | 2017

A DNA vaccine delivered by dermal electroporation fully protects cynomolgus macaques against Lassa fever

Kathleen A. Cashman; Eric R. Wilkinson; Carl I. Shaia; Paul R Facemire; Todd M. Bell; Jeremy J. Bearss; Joshua D. Shamblin; Suzanne E. Wollen; Kate E. Broderick; Niranjan Y. Sardesai; Connie S. Schmaljohn

ABSTRACT Lassa virus (LASV) is an ambisense RNA virus in the Arenaviridae family and is the etiological agent of Lassa fever, a severe hemorrhagic disease endemic to West and Central Africa.1,2 There are no US Food and Drug Administration (FDA)-licensed vaccines available to prevent Lassa fever.1,2 in our previous studies, we developed a gene-optimized DNA vaccine that encodes the glycoprotein precursor gene of LASV (Josiah strain) and demonstrated that 3 vaccinations accompanied by dermal electroporation protected guinea pigs from LASV-associated illness and death. Here, we describe an initial efficacy experiment in cynomolgus macaque nonhuman primates (NHPs) in which we followed an identical 3-dose vaccine schedule that was successful in guinea pigs, and a follow-on experiment in which we used an accelerated vaccination strategy consisting of 2 administrations, spaced 4 weeks apart. In both studies, all of the LASV DNA-vaccinated NHPs survived challenge and none of them had measureable, sustained viremia or displayed weight loss or other disease signs post-exposure. Three of 10 mock-vaccinates survived exposure to LASV, but all of them became acutely ill post-exposure and remained chronically ill to the study end point (45 d post-exposure). Two of the 3 survivors experienced sensorineural hearing loss (described elsewhere). These results clearly demonstrate that the LASV DNA vaccine combined with dermal electroporation is a highly effective candidate for eventual use in humans.


Journal of Virology | 2016

Depletion of Alveolar Macrophages Does Not Prevent Hantavirus Disease Pathogenesis in Golden Syrian Hamsters

Christopher D. Hammerbeck; Rebecca L. Brocato; Todd M. Bell; Christopher W. Schellhase; Steven R. Mraz; Laurie A. Queen; Jay W. Hooper

ABSTRACT Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, dysregulation of components of the immune response is often suggested as a possible cause. Alveolar macrophages are found in the alveoli of the lung and represent the first line of defense to many airborne pathogens. To determine whether alveolar macrophages play a role in HPS pathogenesis, alveolar macrophages were depleted in an adult rodent model of HPS that closely resembles human HPS. Syrian hamsters were treated, intratracheally, with clodronate-encapsulated liposomes or control liposomes and were then challenged with ANDV. Treatment with clodronate-encapsulated liposomes resulted in significant reduction in alveolar macrophages, but depletion did not prevent pathogenesis or prolong disease. Depletion also did not significantly reduce the amount of virus in the lung of ANDV-infected hamsters but altered neutrophil recruitment, MIP-1α and MIP-2 chemokine expression, and vascular endothelial growth factor (VEGF) levels in hamster bronchoalveolar lavage (BAL) fluid early after intranasal challenge. These data demonstrate that alveolar macrophages may play a limited protective role early after exposure to aerosolized ANDV but do not directly contribute to hantavirus disease pathogenesis in the hamster model of HPS. IMPORTANCE Hantaviruses continue to cause disease worldwide for which there are no FDA-licensed vaccines, effective postexposure prophylactics, or therapeutics. Much of this can be attributed to a poor understanding of the mechanism of hantavirus disease pathogenesis. Hantavirus disease has long been considered an immune-mediated disease; however, by directly manipulating the Syrian hamster model, we continue to eliminate individual immune cell types. As the most numerous immune cells present in the respiratory tract, alveolar macrophages are poised to defend against hantavirus infection, but those antiviral responses may also contribute to hantavirus disease. Here, we demonstrate that, like in our prior T and B cell studies, alveolar macrophages neither prevent hantavirus infection nor cause hantavirus disease. While these studies reflect pathogenesis in the hamster model, they should help us rule out specific cell types and prompt us to consider other potential mechanisms of disease in an effort to improve the outcome of human HPS.


Veterinary Pathology | 2017

Temporal Progression of Lesions in Guinea Pigs Infected With Lassa Virus

Todd M. Bell; C. I. Shaia; J. J. Bearss; M. E. Mattix; Keith A Koistinen; S. P. Honnold; X. Zeng; C. D. Blancett; G. C. Donnelly; J. D. Shamblin; E. R. Wilkinson; K. A. Cashman

Lassa virus (LASV) infection causes an acute, multisystemic viral hemorrhagic fever that annually infects an estimated 100 000 to 300 000 persons in West Africa. This pathogenesis study evaluated the temporal progression of disease in guinea pigs following aerosol and subcutaneous inoculation of the Josiah strain of LASV as well as the usefulness of Strain 13 guinea pigs as an animal model for Lassa fever. After experimental infection, guinea pigs (Cavia porcellus; n = 67) were serially sampled to evaluate the temporal progression of infection, gross and histologic lesions, and serum chemistry and hematologic changes. Guinea pigs developed viremia on day 5 to 6 postexposure (PE), with clinical signs appearing by day 7 to 8 PE. Complete blood counts revealed lymphopenia and thrombocytopenia. Gross pathologic findings included skin lesions and congested lungs. Histologic lesions consisted of cortical lymphoid depletion by day 6 to 7 PE with lymphohistiocytic interstitial pneumonia at 7 to 8 days PE. Scattered hepatocellular degeneration and cell death were also noted in the liver and, to a lesser extent, in other tissues including the haired skin, lung, heart, adrenal gland, lymph nodes, thymus, and spleen. The first cell types to demonstrate staining for viral antigen were fibroblastic reticular cells and macrophages/dendritic cells in the lymph nodes on day 5 to 6 PE. This study demonstrates similarities between Lassa viral disease in human infections and experimental guinea pig infection. These shared pathologic characteristics support the utility of guinea pigs as an additional animal model for vaccine and therapeutic development under the Food and Drug Administration’s Animal Rule.


Veterinary Pathology | 2018

Coccidioidomycosis in Nonhuman Primates: Pathologic and Clinical Findings

Keith A Koistinen; Lisa Mullaney; Todd M. Bell; Sherif R. Zaki; Aysegul Nalca; Ondraya Frick; Virginia Livingston; Camenzind G. Robinson; J. Scot Estep; K. Lance Batey; Edward J. Dick; Michael A. Owston

Coccidioidomycosis in nonhuman primates has been sporadically reported in the literature. This study describes 22 cases of coccidioidomycosis in nonhuman primates within an endemic region, and 79 cases of coccidioidomycosis from the veterinary literature are also reviewed. The 22 cases included baboons (n = 10), macaques (n = 9), and chimpanzees (n = 3). The majority died or were euthanized following episodes of dyspnea, lethargy, or neurologic and locomotion abnormalities. The lungs were most frequently involved followed by the vertebral column and abdominal organs. Microscopic examination revealed granulomatous inflammation accompanied by fungal spherules variably undergoing endosporulation. Baboons represented a large number of cases presented here and had a unique presentation with lesions in bone or thoracic organs, but none had both intrathoracic and extrathoracic lesions. Although noted in 3 cases in the literature, cutaneous infections were not observed among the 22 contemporaneous cases. Similarly, subclinical infections were only rarely observed (2 cases). This case series and review of the literature illustrates that coccidioidomycosis in nonhuman primates reflects human disease with a varied spectrum of presentations from localized lesions to disseminated disease.


PLOS ONE | 2014

A Yersinia pestis tat Mutant Is Attenuated in Bubonic and Small-Aerosol Pneumonic Challenge Models of Infection but Not As Attenuated by Intranasal Challenge

Joel A. Bozue; Christopher K. Cote; Taylor Chance; Jeffrey R. Kugelman; Steven J. Kern; Todd K. Kijek; Amy Jenkins; Sherry Mou; Krishna Sulayman Moody; David Fritz; Camenzind G. Robinson; Todd M. Bell; Patricia L. Worsham

Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.

Collaboration


Dive into the Todd M. Bell's collaboration.

Top Co-Authors

Avatar

Carl I. Shaia

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Connie S. Schmaljohn

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Eric R. Wilkinson

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Joshua D. Shamblin

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Kathleen A. Cashman

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Anna N. Honko

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ginger Donnelly

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Heather L. Esham

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Lisa E. Hensley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Paul R Facemire

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge