Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd M. Brusko is active.

Publication


Featured researches published by Todd M. Brusko.


Nature Genetics | 2007

Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes

Christopher E. Lowe; Jason D. Cooper; Todd M. Brusko; Neil M Walker; Deborah J. Smyth; Rebecca Bailey; Kirsi Bourget; Vincent Plagnol; Sarah Field; Mark A. Atkinson; David G. Clayton; Linda S. Wicker; John A. Todd

Genome-wide association studies are now identifying disease-associated chromosome regions. However, even after convincing replication, the localization of the causal variant(s) requires comprehensive resequencing, extensive genotyping and statistical analyses in large sample sets leading to targeted functional studies. Here, we have localized the type 1 diabetes (T1D) association in the interleukin 2 receptor alpha (IL2RA) gene region to two independent groups of SNPs, spanning overlapping regions of 14 and 40 kb, encompassing IL2RA intron 1 and the 5′ regions of IL2RA and RBM17 (odds ratio = 2.04, 95% confidence interval = 1.70–2.45; P = 1.92 × 10−28; control frequency = 0.635). Furthermore, we have associated IL2RA T1D susceptibility genotypes with lower circulating levels of the biomarker, soluble IL-2RA (P = 6.28 × 10−28), suggesting that an inherited lower immune responsiveness predisposes to T1D.


Nature Genetics | 2004

A functional variant of SUMO4, a new I|[kappa]|B|[alpha]| modifier, is associated with type 1 diabetes

Dehuang Guo; Manyu Li; Yan Zhang; Ping Yang; Sarah Eckenrode; Diane Hopkins; Weipeng Zheng; Sharad Purohit; Robert H. Podolsky; Andrew Muir; Jinzhao Wang; Zheng Dong; Todd M. Brusko; Mark A. Atkinson; Paolo Pozzilli; Adina Zeidler; Leslie J. Raffel; Chaim O. Jacob; Yongsoo Park; Manuel Serrano-Ríos; Maria Teresa Martinez Larrad; Zixin Zhang; Henri Jean Garchon; Jean Francois Bach; Jerome I. Rotter; Jin Xiong She; Cong Yi Wang

Previous studies have suggested more than 20 genetic intervals that are associated with susceptibility to type 1 diabetes (T1D), but identification of specific genes has been challenging and largely limited to known candidate genes. Here, we report evidence for an association between T1D and multiple single-nucleotide polymorphisms in 197 kb of genomic DNA in the IDDM5 interval. We cloned a new gene (SUMO4), encoding small ubiquitin-like modifier 4 protein, in the interval. A substitution (M55V) at an evolutionarily conserved residue of the crucial CUE domain of SUMO4 was strongly associated with T1D (P = 1.9 × 10−7). SUMO4 conjugates to IκBα and negatively regulates NFκB transcriptional activity. The M55V substitution resulted in 5.5 times greater NFκB transcriptional activity and ∼2 times greater expression of IL12B, an NFκB-dependent gene. These findings suggest a new pathway that may be implicated in the pathogenesis of T1D.


Immunological Reviews | 2008

Human regulatory T cells: role in autoimmune disease and therapeutic opportunities

Todd M. Brusko; Amy L. Putnam; Jeffrey A. Bluestone

Summary The importance of regulatory T lymphocytes (Tregs) in the control of autoimmunity is now well established in a variety of experimental animal models. In addition, there are numerous studies suggesting that Treg deficits may be an underlying cause of human autoimmune diseases. The emergence of Tregs as an essential component of immune homeostasis provides a potential therapeutic opportunity for active immune regulation and long‐term tolerance induction. In this article, we summarize the core basic science and animal model studies of Tregs, review the status of multiple biologic and small molecule chemical compounds to promote Treg development in vivo, and discuss recent advances for the identification and expansion of polyclonal and antigen‐specific Tregs for adoptive immunotherapy. In summary, the review provides an in‐depth analysis and highlights the challenges and opportunities for immune intervention with Treg‐based therapeutics.


American Journal of Pathology | 2004

Heme Oxygenase-1 Modulates Early Inflammatory Responses: Evidence from the Heme Oxygenase-1-Deficient Mouse

Matthias H. Kapturczak; Clive Wasserfall; Todd M. Brusko; Martha Campbell-Thompson; Tamir M. Ellis; Mark A. Atkinson; Anupam Agarwal

Induction of heme oxygenase-1 (HO-1) is protective in tissue injury in models of allograft rejection and vascular inflammation through either prevention of oxidative damage or via immunomodulatory effects. To examine the specific role of HO-1 in modulating the immune response, we examined the differences in immune phenotype between HO-1 knockout (HO-1(-/-)) and wild-type (HO-1(+/+)) mice. Consistent with previous findings, marked splenomegaly and fibrosis were observed in HO-1(-/-) mice. The lymph nodes of HO-1-deficient mice demonstrated a relative paucity of CD3- and B220-positive cells, but no such abnormalities were observed in the thymus. Flow cytometric analysis of isolated splenocytes demonstrated no differences in the proportions of T lymphocytes, B lymphocytes or monocytes/macrophages between the HO-1(-/-) and HO-1(+/+) mice. Significantly higher baseline serum IgM levels were observed in HO-1(-/-) versus HO-1(+/+) mice. Under mitogen stimulation with either lipopolysaccharide or anti-CD3/anti-CD28, HO-1(-/-) splenocytes secreted disproportionately higher levels of pro-inflammatory Th1 cytokines as compared to those from HO-1(+/+) mice. These findings demonstrate significant differences in the immune phenotype between the HO-1(-/-) and the HO-1(+/+) mice. The absence of HO-1 correlates with a Th1-weighted shift in cytokine responses suggesting a general pro-inflammatory tendency associated with HO-1 deficiency.


Diabetes | 2009

Expansion of Human Regulatory T-Cells From Patients With Type 1 Diabetes

Amy L. Putnam; Todd M. Brusko; Michael R. Lee; Weihong Liu; Gregory L. Szot; Taumoha Ghosh; Mark A. Atkinson; Jeffrey A. Bluestone

OBJECTIVE—Regulatory T-cells (Tregs) have catalyzed the field of immune regulation. However, translating Treg-based therapies from animal models of autoimmunity to human clinical trials requires robust methods for the isolation and expansion of these cells—a need forming the basis for these studies. RESEARCH DESIGN AND METHODS—Tregs from recent-onset type 1 diabetic patients and healthy control subjects were isolated by fluorescence-activated cell sorting and compared for their capacity to expand in vitro in response to anti-CD3–anti-CD28–coated microbeads and IL-2. Expanded cells were examined for suppressive function, lineage markers and FOXP3, and cytokine production. RESULTS—Both CD4+CD127lo/− and CD4+CD127lo/−CD25+ T-cells could be expanded and used as Tregs. However, expansion of CD4+CD127lo/− cells required the addition of rapamycin to maintain lineage purity. In contrast, expansion of CD4+CD127lo/−CD25+ T-cells, especially the CD45RA+ subset, resulted in high yield, functional Tregs that maintained higher FOXP3 expression in the absence of rapamycin. Tregs from type 1 diabetic patients and control subjects expanded similarly and were equally capable of suppressing T-cell proliferation. Regulatory cytokines were produced by Tregs after culture; however, a portion of FOXP3+ cells were capable of producing interferon (IFN)-γ after reactivation. IFN-γ production was observed from both CD45RO+ and CD45RA+ Treg populations. CONCLUSIONS—The results support the feasibility of isolating Tregs for in vitro expansion. Based on expansion capacity, FOXP3 stability, and functional properties, the CD4+CD127lo/−CD25+ T-cells represent a viable cell population for cellular therapy in this autoimmune disease.


Journal of Immunology | 2011

Plasticity of Human Regulatory T Cells in Healthy Subjects and Patients with Type 1 Diabetes

Stephanie McClymont; Amy L. Putnam; Michael R. Lee; Jonathan H. Esensten; Weihong Liu; Maigan A. Hulme; Ulrich Hoffmüller; Udo Baron; Sven Olek; Jeffrey A. Bluestone; Todd M. Brusko

Regulatory T cells (Tregs) constitute an attractive therapeutic target given their essential role in controlling autoimmunity. However, recent animal studies provide evidence for functional heterogeneity and lineage plasticity within the Treg compartment. To understand better the plasticity of human Tregs in the context of type 1 diabetes, we characterized an IFN-γ–competent subset of human CD4+CD127lo/−CD25+ Tregs. We measured the frequency of Tregs in the peripheral blood of patients with type 1 diabetes by epigenetic analysis of the Treg-specific demethylated region (TSDR) and the frequency of the IFN-γ+ subset by flow cytometry. Purified IFN-γ+ Tregs were assessed for suppressive function, degree of TSDR demethylation, and expression of Treg lineage markers FOXP3 and Helios. The frequency of Tregs in peripheral blood was comparable but the FOXP3+IFN-γ+ fraction was significantly increased in patients with type 1 diabetes compared to healthy controls. Purified IFN-γ+ Tregs expressed FOXP3 and possessed suppressive activity but lacked Helios expression and were predominately methylated at the TSDR, characteristics of an adaptive Treg. Naive Tregs were capable of upregulating expression of Th1-associated T-bet, CXCR3, and IFN-γ in response to IL-12. Notably, naive, thymic-derived natural Tregs also demonstrated the capacity for Th1 differentiation without concomitant loss of Helios expression or TSDR demethylation.


Diabetes | 2007

No Alterations in the Frequency of FOXP3+ Regulatory T-Cells in Type 1 Diabetes

Todd M. Brusko; Clive Wasserfall; Kieran McGrail; Richard Schatz; Hilla Lee Viener; Desmond A. Schatz; Michael J. Haller; Jennifer Rockell; Peter A. Gottlieb; Michael Clare-Salzler; Mark A. Atkinson

Regulatory T-cells (Tregs) play a critical role in maintaining dominant peripheral tolerance. Previous characterizations of Tregs in type 1 diabetes have used antibodies against CD4 and α-chain of the interleukin-2 receptor complex (CD25). This report extends those investigations by the addition of a more lineage-specific marker for Tregs, transcription factor forkhead box P3 (FOXP3), in subjects with type 1 diabetes, their first-degree relatives, and healthy control subjects. With inclusion of this marker, two predominant populations of CD4+CD25+ T-cells were identified: CD4+CD25+FOXP3+ as well as CD4+FOXP3− T-cells expressing low levels of CD25 (CD4+CD25LOWFOXP3−). In all study groups, the frequency of CD4+CD25+FOXP3+ cells was age independent, whereas CD4+CD25LOWFOXP3− cell frequencies strongly associated with age. In terms of additional markers for delineating cells of Treg lineage, FOXP3+ cells were CD127− to CD127LOW whereas CD25+ cells were less restricted in their expression of this marker, with CD127 expressed across a continuum of levels. Importantly, no differences were observed in the frequency of CD4+CD25+FOXP3+ T-cells in individuals with or at varying degrees of risk for type 1 diabetes. These investigations suggest that altered peripheral blood frequencies of Tregs, as defined by the expression of FOXP3, are not specifically associated with type 1 diabetes and continue to highlight age as an important variable in analysis of immune regulation.


Science Translational Medicine | 2015

Normalization of CD4+ T cell metabolism reverses lupus

Yiming Yin; Seung-Chul Choi; Zhiwei Xu; Daniel J. Perry; Howard R. Seay; Byron P. Croker; Eric S. Sobel; Todd M. Brusko; Laurence Morel

Systemic lupus erythematosus is associated with enhanced CD4+ T cell metabolism and can be reversed by metabolic modulators. Normalizing immune cell metabolism treats lupus Systemic lupus erythematosus (SLE) is an autoimmune disease where the immune system attacks normal, healthy tissues. CD4+ T cells are critical to SLE pathogenesis, but it has remained unclear if metabolism in these cells contributes to disease. Now, Yin et al. report that two metabolic pathways—glycolysis and mitochondrial oxidative metabolism—are elevated in cells from SLE patients as well as in mouse models of disease. What’s more, inhibitors of these pathways currently in the clinic—2-deoxy-d-glucose (2DG) and metformin—normalized T cell metabolism and decreased markers of SLE in animal models as well as in cells from SLE patients. These data suggest that inhibiting both glycolysis and mitochondrial metabolism could be a new therapeutic strategy for treating SLE. Systemic lupus erythematosus (SLE) is an autoimmune disease in which autoreactive CD4+ T cells play an essential role. CD4+ T cells rely on glycolysis for inflammatory effector functions, but recent studies have shown that mitochondrial metabolism supports their chronic activation. How these processes contribute to lupus is unclear. We show that both glycolysis and mitochondrial oxidative metabolism are elevated in CD4+ T cells from lupus-prone B6.Sle1.Sle2.Sle3 (TC) mice as compared to non-autoimmune controls. In vitro, both the mitochondrial metabolism inhibitor metformin and the glucose metabolism inhibitor 2-deoxy-d-glucose (2DG) reduced interferon-γ (IFN-γ) production, although at different stages of activation. Metformin also restored the defective interleukin-2 (IL-2) production by TC CD4+ T cells. In vivo, treatment of TC mice and other lupus models with a combination of metformin and 2DG normalized T cell metabolism and reversed disease biomarkers. Further, CD4+ T cells from SLE patients also exhibited enhanced glycolysis and mitochondrial metabolism that correlated with their activation status, and their excessive IFN-γ production was significantly reduced by metformin in vitro. These results suggest that normalization of T cell metabolism through the dual inhibition of glycolysis and mitochondrial metabolism is a promising therapeutic venue for SLE.


Journal of Immunology | 2003

Systemic Overexpression of IL-10 Induces CD4+CD25+ Cell Populations In Vivo and Ameliorates Type 1 Diabetes in Nonobese Diabetic Mice in a Dose-Dependent Fashion

Kevin Goudy; Brant R. Burkhardt; Clive Wasserfall; Sihong Song; Martha Campbell-Thompson; Todd M. Brusko; Matthew Powers; Michael Clare-Salzler; Eric S. Sobel; Tamir M. Ellis; Terence R. Flotte; Mark A. Atkinson

Early systemic treatment of nonobese diabetic mice with high doses of recombinant adeno-associated virus (rAAV) vector expressing murine IL-10 prevents type 1 diabetes. To determine the therapeutic parameters and immunological mechanisms underlying this observation, female nonobese diabetic mice at 4, 8, and 12 wk of age were given a single i.m. injection of rAAV-murine IL-10 (104, 106, 108, and 109 infectious units (IU)), rAAV-vector expressing truncated murine IL-10 fragment (109 IU), or saline. Transduction with rAAV-IL-10 at 109 IU completely prevented diabetes in all animals injected at all time points, including, surprisingly, 12-wk-old animals. Treatment with 108 IU provided no protection in the 12-wk-old injected mice, partial prevention in 8-wk-old mice, and full protection in all animals injected at 4 wk of age. All other treatment groups developed diabetes at a similar rate. The rAAV-IL-10 therapy attenuated pancreatic insulitis, decreased MHC II expression on CD11b+ cells, increased the population of CD11b+ cells, and modulated insulin autoantibody production. Interestingly, rAAV-IL-10 therapy dramatically increased the percentage of CD4+CD25+ regulatory T cells. Adoptive transfer studies suggest that rAAV-IL-10 treatment alters the capacity of splenocytes to impart type 1 diabetes in recipient animals. This study indicates the potential for immunomodulatory gene therapy to prevent autoimmune diseases, including type 1 diabetes, and implicates IL-10 as a molecule capable of increasing the percentages of regulatory cells in vivo.


Experimental Hematology | 2008

Autologous Umbilical Cord Blood Infusion for Type 1 Diabetes

Michael J. Haller; Hilla-Lee Viener; Clive Wasserfall; Todd M. Brusko; Mark A. Atkinson; Desmond A. Schatz

OBJECTIVE The physical, emotional, and economic costs of type 1 diabetes (T1D) mandate continued efforts to develop effective strategies to prevent or reverse the disease. Herein, we describe the scientific and therapeutic rationale underlying efforts utilizing umbilical cord blood (UCB) as a therapy for ameliorating the progression of this autoimmune disease. MATERIALS AND METHODS We recently embarked on a pilot study to document the safety and potential efficacy of autologous UCB infusion in subjects with T1D. Under this protocol, patients recently diagnosed with the disease and for whom autologous cord blood is stored, undergo infusion. Studies are performed before infusion and every 3 to 6 months postinfusion for immunologic and metabolic assessment. To date, 15 autologous infusions have been performed. RESULTS Preliminary observations suggest that autologous cord blood transfusion is safe and provides some slowing of the loss of endogenous insulin production in children with T1D. Mechanistic studies demonstrate that umbilical cord blood contains highly functional populations of regulatory T cells (Treg) and that increased Treg populations may be found in the peripheral blood of subjects more than 6 months after cord blood infusion. We provide the rationale for cord blood-based therapies, a summary of our initial protocol, and plans for future studies designed to explore the potential of cord blood-derived regulatory T cells to treat T1D. CONCLUSIONS Prolonged follow-up and additional mechanistic efforts are urgently needed to determine if umbilical cord blood-derived stem cells can be used as part of safe and effective therapies for T1D.

Collaboration


Dive into the Todd M. Brusko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge