Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd M. Link is active.

Publication


Featured researches published by Todd M. Link.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Structure of Escherichia coli Hfq bound to polyriboadenylate RNA

Todd M. Link; Poul Valentin-Hansen; Richard G. Brennan

Hfq is a small, highly abundant hexameric protein that is found in many bacteria and plays a critical role in mRNA expression and RNA stability. As an “RNA chaperone,” Hfq binds AU-rich sequences and facilitates the trans annealing of small RNAs (sRNAs) to their target mRNAs, typically resulting in the down-regulation of gene expression. Hfq also plays a key role in bacterial RNA decay by binding tightly to polyadenylate [poly(A)] tracts. The structural mechanism by which Hfq recognizes and binds poly(A) is unknown. Here, we report the crystal structure of Escherichia coli Hfq bound to the poly(A) RNA, A15. The structure reveals a unique RNA binding mechanism. Unlike uridine-containing sequences, which bind to the “proximal” face, the poly(A) tract binds to the “distal” face of Hfq using 6 tripartite binding motifs. Each motif consists of an adenosine specificity site (A site), which is effected by peptide backbone hydrogen bonds, a purine nucleotide selectivity site (R site), and a sequence-nondiscriminating RNA entrance/exit site (E site). The resulting implication that Hfq can bind poly(A-R-N) triplets, where R is a purine nucleotide and N is any nucleotide, was confirmed by binding studies. Indeed, Hfq bound to the oligoribonucleotides (AGG)8, (AGC)8, and the shorter (A-R-N)4 sequence, AACAACAAGAAG, with nanomolar affinities. The abundance of (A-R-N)4 and (A-R-N)5 triplet repeats in the E. coli genome suggests additional RNA targets for Hfq. Further, the structure provides insight into Hfq-mediated sRNA-mRNA annealing and the role of Hfq in RNA decay.


Molecular and Cellular Biology | 2006

Cyclin D1 Determines Mitochondrial Function In Vivo

Toshiyuki Sakamaki; Mathew C. Casimiro; Xiaoming Ju; Andrew A. Quong; Sanjay Katiyar; Manran Liu; Xuanmao Jiao; Anping Li; Xueping Zhang; Yinan Lu; Chenguang Wang; Stephen W. Byers; Rob Nicholson; Todd M. Link; Melvin Shemluck; Jianguo Yang; Stanley T. Fricke; Phyllis M. Novikoff; Alexandros Papanikolaou; Andrew Arnold; Christopher Albanese; Richard G. Pestell

ABSTRACT The cyclin D1 gene encodes a regulatory subunit of the holoenzyme that phosphorylates and inactivates the pRb tumor suppressor to promote nuclear DNA synthesis. cyclin D1 is overexpressed in human breast cancers and is sufficient for the development of murine mammary tumors. Herein, cyclin D1 is shown to perform a novel function, inhibiting mitochondrial function and size. Mitochondrial activity was enhanced by genetic deletion or antisense or small interfering RNA to cyclin D1. Global gene expression profiling and functional analysis of mammary epithelial cell-targeted cyclin D1 antisense transgenics demonstrated that cyclin D1 inhibits mitochondrial activity and aerobic glycolysis in vivo. Reciprocal regulation of these genes was observed in cyclin D1-induced mammary tumors. Cyclin D1 thus integrates nuclear DNA synthesis and mitochondrial function.


Nucleic Acids Research | 2014

Mapping Hfq-RNA interaction surfaces using tryptophan fluorescence quenching

Kirsten E. Robinson; Jillian Orans; Alexander R. Kovach; Todd M. Link; Richard G. Brennan

Hfq is a posttranscriptional riboregulator and RNA chaperone that binds small RNAs and target mRNAs to effect their annealing and message-specific regulation in response to environmental stressors. Structures of Hfq-RNA complexes indicate that U-rich sequences prefer the proximal face and A-rich sequences the distal face; however, the Hfq-binding sites of most RNAs are unknown. Here, we present an Hfq-RNA mapping approach that uses single tryptophan-substituted Hfq proteins, all of which retain the wild-type Hfq structure, and tryptophan fluorescence quenching (TFQ) by proximal RNA binding. TFQ properly identified the respective distal and proximal binding of A15 and U6 RNA to Gram-negative Escherichia coli (Ec) Hfq and the distal face binding of (AA)3A, (AU)3A and (AC)3A to Gram-positive Staphylococcus aureus (Sa) Hfq. The inability of (GU)3G to bind the distal face of Sa Hfq reveals the (R-L)n binding motif is a more restrictive (A-L)n binding motif. Remarkably Hfq from Gram-positive Listeria monocytogenes (Lm) binds (GU)3G on its proximal face. TFQ experiments also revealed the Ec Hfq (A-R-N)n distal face-binding motif should be redefined as an (A-A-N)n binding motif. TFQ data also demonstrated that the 5′-untranslated region of hfq mRNA binds both the proximal and distal faces of Ec Hfq and the unstructured C-terminus.


Nucleic Acids Research | 2007

Chromatin-associated HMG-17 is a major regulator of homeodomain transcription factor activity modulated by Wnt/β-catenin signaling

Melanie Amen; Herbert M. Espinoza; Carol J. Cox; Xiaowen Liang; Jianbo Wang; Todd M. Link; Richard G. Brennan; James F. Martin; Brad A. Amendt

Homeodomain (HD) transcriptional activities are tightly regulated during embryogenesis and require protein interactions for their spatial and temporal activation. The chromatin-associated high mobility group protein (HMG-17) is associated with transcriptionally active chromatin, however its role in regulating gene expression is unclear. This report reveals a unique strategy in which, HMG-17 acts as a molecular switch regulating HD transcriptional activity. The switch utilizes the Wnt/β-catenin signaling pathway and adds to the diverse functions of β-catenin. A high-affinity HMG-17 interaction with the PITX2 HD protein inhibits PITX2 DNA-binding activity. The HMG-17/PITX2 inactive complex is concentrated to specific nuclear regions primed for active transcription. β-Catenin forms a ternary complex with PITX2/HMG-17 to switch it from a repressor to an activator complex. Without β-catenin, HMG-17 can physically remove PITX2 from DNA to inhibit its transcriptional activity. The PITX2/HMG-17 regulatory complex acts independently of promoter targets and is a general mechanism for the control of HD transcriptional activity. HMG-17 is developmentally regulated and its unique role during embryogenesis is revealed by the early embryonic lethality of HMG-17 homozygous mice. This mechanism provides a new role for canonical Wnt/β-catenin signaling in regulating HD transcriptional activity during development using HMG-17 as a molecular switch.


Nature Chemical Biology | 2016

SF2312 is a natural phosphonate inhibitor of enolase

Paul G. Leonard; Nikunj Satani; David Maxwell; Yu Hsi Lin; Naima Hammoudi; Zhenghong Peng; Federica Pisaneschi; Todd M. Link; Gilbert R. Lee; Duoli Sun; Basvoju A. Bhanu Prasad; Maria Emilia Di Francesco; Barbara Czako; John M. Asara; Y. Alan Wang; William G. Bornmann; Ronald A. DePinho; Florian Muller

Despite being critical for energy generation in most forms of life, few if any microbial antibiotics specifically inhibit glycolysis. To develop a specific inhibitor of the glycolytic enzyme Enolase 2 for the treatment of cancers with deletion of Enolase 1, we modeled the synthetic tool compound inhibitor, Phosphonoacetohydroxamate (PhAH) into the active site of human ENO2. A ring-stabilized analogue of PhAH, with the hydroxamic nitrogen linked to the alpha-carbon by an ethylene bridge, was predicted to increase binding affinity by stabilizing the inhibitor in a bound conformation. Unexpectedly, a structure based search revealed that our hypothesized back-bone-stabilized PhAH bears strong similarity to SF2312, a phosphonate antibiotic of unknown mode of action produced by the actinomycete Micromonospora, which is active under anaerobic conditions. Here, we present multiple lines of evidence, including a novel X-ray structure, that SF2312 is a highly potent, low nM inhibitor of Enolase.


Journal of Medicinal Chemistry | 2015

Targeting the Src Homology 2 (SH2) Domain of Signal Transducer and Activator of Transcription 6 (STAT6) with Cell-Permeable, Phosphatase-Stable Phosphopeptide Mimics Potently Inhibits Tyr641 Phosphorylation and Transcriptional Activity.

Pijus K. Mandal; Pietro Morlacchi; J. Morgan Knight; Todd M. Link; Gilbert R. Lee; Roza Nurieva; Divyendu Singh; Ankur Dhanik; Lydia E. Kavraki; David B. Corry; John E. Ladbury; John S. McMurray

Signal transducer and activator of transcription 6 (STAT6) transmits signals from cytokines IL-4 and IL-13 and is activated in allergic airway disease. We are developing phosphopeptide mimetics targeting the SH2 domain of STAT6 to block recruitment to phosphotyrosine residues on IL-4 or IL-13 receptors and subsequent Tyr641 phosphorylation to inhibit the expression of genes contributing to asthma. Structure-affinity relationship studies showed that phosphopeptides based on Tyr631 from IL-4Rα bind with weak affinity to STAT6, whereas replacing the pY+3 residue with simple aryl and alkyl amides resulted in affinities in the mid to low nM range. A set of phosphatase-stable, cell-permeable prodrug analogues inhibited cytokine-stimulated STAT6 phosphorylation in both Beas-2B human airway cells and primary mouse T-lymphocytes at concentrations as low as 100 nM. IL-13-stimulated expression of CCL26 (eotaxin-3) was inhibited in a dose-dependent manner, demonstrating that targeting the SH2 domain blocks both phosphorylation and transcriptional activity of STAT6.


PLOS ONE | 2014

Plakophilin-3 Catenin Associates with the ETV1/ER81 Transcription Factor to Positively Modulate Gene Activity

William A. Muñoz; Moonsup Lee; Rachel K. Miller; Zamal Ahmed; Hong Ji; Todd M. Link; Gilbert R. Lee; Malgorzata Kloc; John E. Ladbury; Pierre D. McCrea

Members of the plakophilin-catenin sub-family (Pkp-1, -2, and -3) facilitate the linkage of desmosome junctional components to each other (e.g. desmosomal cadherins to desmoplakin) and the intermediate-filament cytoskeleton. Pkps also contribute to desmosomal stabilization and the trafficking of its components. The functions of Pkps outside of the desmosome are less well studied, despite evidence suggesting their roles in mRNA regulation, small-GTPase modulation (e.g. mid-body scission) during cell division, and cell survival following DNA damage. Pkp-catenins are further believed to have roles in the nucleus given their nuclear localization in some contexts and the known nuclear roles of structurally related catenins, such as beta-catenin and p120-catenin. Further, Pkp-catenin activities in the nuclear compartment have become of increased interest with the identification of interactions between Pkp2-catenin and RNA Pol III and Pkp1 with single-stranded DNA. Consistent with earlier reports suggesting possible nuclear roles in development, we previously demonstrated prominent nuclear localization of Pkp3 in Xenopus naïve ectoderm (“animal cap”) cells and recently resolved a similar localization in mouse embryonic stem cells. Here, we report the association and positive functional interaction of Pkp3 with a transcription factor, Ets variant gene 1 (ETV1), which has critical roles in neural development and prominent roles in human genetic disease. Our results are the first to report the interaction of a sequence-specific transcription factor with any Pkp. Using Xenopus laevis embryos and mammalian cells, we provide evidence for the Pkp3:ETV1 complex on both biochemical and functional levels.


Journal of Biological Chemistry | 2015

Structural basis of cyclic nucleotide selectivity in cGMP dependent protein kinase II.

James C. Campbell; Jeong Joo Kim; Kevin Y. Li; Gilbert Y. Huang; Albert S. Reger; Shinya Matsuda; Banumathi Sankaran; Todd M. Link; Keizo Yuasa; John E. Ladbury; Darren E. Casteel; Choel Kim

Membrane-bound cGMP-dependent protein kinase (PKG) II is a key regulator of bone growth, renin secretion, and memory formation. Despite its crucial physiological roles, little is known about its cyclic nucleotide selectivity mechanism due to a lack of structural information. Here, we find that the C-terminal cyclic nucleotide binding (CNB-B) domain of PKG II binds cGMP with higher affinity and selectivity when compared with its N-terminal CNB (CNB-A) domain. To understand the structural basis of cGMP selectivity, we solved co-crystal structures of the CNB domains with cyclic nucleotides. Our structures combined with mutagenesis demonstrate that the guanine-specific contacts at Asp-412 and Arg-415 of the αC-helix of CNB-B are crucial for cGMP selectivity and activation of PKG II. Structural comparison with the cGMP selective CNB domains of human PKG I and Plasmodium falciparum PKG (PfPKG) shows different contacts with the guanine moiety, revealing a unique cGMP selectivity mechanism for PKG II.


Molecular Cancer Therapeutics | 2017

Abstract A39: Pomhex, a cell-permeable high potency enolase inhibitor with utility for collateral lethality treatment of cancer

Yu-Hsi Lin; Nikunj Satani; Naima Hammoudi; Federica Pisaneschi; Paul G. Leonard; David Maxwell; Zhenghong Peng; Todd M. Link; Lee Iv R. Gilbert; Ananth Bosajou; Duoli Sun; Joe Marszalek; Yuting Sun; John S. McMurray; Pijus K. Mandal; Maria Emilia Di Francesco; Barbara Czako; Alan Wang; William G. Bornmann; Ronald A. DePinho; Florian Muller

Glycolysis inhibition is an active area of investigation for the treatment of cancer. However, few compounds have progressed beyond the cell culture stage. We have recently demonstrated that genomic passenger deletion of the glycolytic enzyme Enolase 1 (ENO1) leaves gliomas harboring such deletions solely reliant on ENO2, rendering them exquisitely sensitive to enolase inhibitors Collateral Lethality. However, the tool compound that we employed for these in vitro studies, Phosphonoacetohydroxamate (PhAH), has very poor pharmacological properties and was ineffective in vivo. We recently reported that a structural analogue of PhAH, the natural phosphonate antibiotic SF2312, is a high potency inhibitor of Enolase. While more potent than PhAH, SF2312 remains poorly cell permeable. Here, we generated a Pivaloyloxymethyl (POM) ester pro-drug derivative of SF2312, termed POMSF, which increased the potency in cell based systems by ~50-fold. POMSF is selectively active against ENO1-deleted glioma cells in culture at ~19 nM, versus μM for SF2312. However, POMSF displayed poor aqueous stability. A derivative of POMSF, termed POMHEX, showed greater stability and its active form, HEX, showed 4-fold preference for ENO1 over ENO2. Labeled 13C-glucose tracing shows that POMHEX inhibits glycolysis at the Enolase step in all cell lines tested, but with ~100-fold greater potency in ENO1-deleted lines. POMHEX selectively killed ENO1-deleted glioma cells with an IC50 Citation Format: Yu-Hsi Lin, Nikunj Satani, Naima Hammoudi, Federica Pisaneschi, Paul Leonard, David Maxwell, Zhenghong Peng, Todd Link, Lee IV R. Gilbert, Ananth Bosajou, Duoli Sun, Joe Marszalek, Yuting Sun, John S. McMurray, Pijus K. Mandal, Maria E. Di Francesco, Barbara Czako, Alan Wang, William Bornmann, Ronald A. DePinho, Florian Muller. Pomhex, a cell-permeable high potency enolase inhibitor with utility for collateral lethality treatment of cancer [abstract]. In: Proceedings of the AACR Precision Medicine Series: Opportunities and Challenges of Exploiting Synthetic Lethality in Cancer; Jan 4-7, 2017; San Diego, CA. Philadelphia (PA): AACR; Mol Cancer Ther 2017;16(10 Suppl):Abstract nr A39.


Molecular Cancer Therapeutics | 2015

Abstract C183: Pomhex: a cell-permeable high potency Enolase inhibitor with in vivo anti-neoplastic activity

Yu-Hsi Lin; Joe Marszalek; Yuting Sun; Naima Hammoudi; Paul G. Leonard; David Maxwell; Nikunj Satani; Peng Zhang; Todd M. Link; Gilbert R. Lee; Maria Emilia Di Francesco; Barbara Czako; Alan Y. Want; Ronald A. DePinho; Florian Muller

Glycolysis inhibition is an active area of investigation in cancer. However, few compounds have progressed beyond the cell culture stage. We have recently demonstrated that genomic passenger deletion of the glycolytic enzyme Enolase 1 (ENO1) leaves gliomas harboring such deletions with less than 10% of normal enzymatic activity, rendering them exquisitely sensitive to enolase inhibitors. However, the tool compound that we employed for these in vitro studies, Phosphonoacetohydroxamate (PhAH), has very poor pharmacological properties and was ineffective in vivo. We performed a SAR studies to increase inhibitor specificity towards ENO2 as well as pro-druging to increase cell permeability. The lead compound generated by these efforts, termed POMHEX, is selectively active against ENO1-deleted glioma cells in culture at ∼35nM (versus μM for PhAH). Using an orthotopic intracranial xenografted model where tumor growth and response to therapy are monitored by MRI, we show that POMHEX is capable of eradicating intracranial ENO1-deleted tumors, with mice remaining recurrence-free even after treatment discontinuation. Taken together, these results reinforce that glycolysis is a viable target and provide in vivo proof-of-principal for the concept of using passenger deletions as targetable vulnerabilities in cancer therapy. Citation Format: Yu-Hsi Lin, Joe Marszalek, Yuting Sun, Naima Hammoudi, Paul Leonard, David Maxwell, Nikunj Satani, Peng Zhang, Todd Link, Gilbert Lee, Maria E. Di Francesco, Barbara Czako, Alan Y. Want, Ronald A. DePinho, Florian L. Muller. Pomhex: a cell-permeable high potency Enolase inhibitor with in vivo anti-neoplastic activity. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr C183.

Collaboration


Dive into the Todd M. Link's collaboration.

Top Co-Authors

Avatar

Gilbert R. Lee

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald A. DePinho

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Czako

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David Maxwell

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Florian Muller

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

John S. McMurray

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Naima Hammoudi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Nikunj Satani

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge